Advertisement

Sur La Non-Dérivabilité de Fonctions Périodiques Associées à Certaines Formules Sommatoires

  • Gérald Tenenbaum
Part of the Algorithms and Combinatorics book series (AC, volume 13)

Abstract

Les fonctions arithmétiques associées aux systèmes de représentations d’entiers, comme le développement dans une base donnée, satisfont généralement des relations de récurrence qui facilitent considérablement l’étude de leur valeur moyenne. Considérons par exemple la somme des chiffres en base 2, que nous désignons par σ(n).

Keywords

Gray Code Binomial Coefficient Linear Recurrence Nous Montrons Positional Number System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. J.-P. Allouche & J. Shallit, The ring of k-regular sequences, Theor. Comp. Sci. 98 (1992), 163–187.MathSciNetzbMATHCrossRefGoogle Scholar
  2. J. Brillhart, P. Erdős & P. Morton, On sums of Rudin-Shapiro coefficients II, Pac. J. Math. 107 (1983), 39–69.zbMATHGoogle Scholar
  3. J. Brillhart & P. Morton, Über Summen von Rudin-Shapiroschen Koeffizienten, III. J. Math. 22 (1978), 126–148.MathSciNetzbMATHGoogle Scholar
  4. L. E. Bush, An asymptotic formula for the average sums of the digits of integers, Amer. Math. Monthly 47 (1940), 154–156.MathSciNetCrossRefGoogle Scholar
  5. E. Cateland, Suites digitales et suites k régulières, Thèse, Université de Bordeaux 1, 1992.Google Scholar
  6. P. Cheo & S. Yien, A problem on the K-adic representation of positive integers, Acta Math. Sinica 5 (1955), 433–438.MathSciNetzbMATHGoogle Scholar
  7. J. Coquet, A summation formula related to the binary digits, Invent. Math. 73 (1983), 107–115.MathSciNetzbMATHCrossRefGoogle Scholar
  8. J. Coquet, Power sums of digital sums, J. Number Theory 22 (1986), 161–176.MathSciNetzbMATHCrossRefGoogle Scholar
  9. J. Coquet & P. van den Bosch, A summation formula involving Fibonacci digits, J. Number Theory 22 (1986), 139–146.MathSciNetzbMATHCrossRefGoogle Scholar
  10. H. Delange, Sur la fonction sommatoire de la fonction “somme des chiffres”, Ens. Math. 21 (1975), 31–47.MathSciNetzbMATHGoogle Scholar
  11. J.-M. Dumont, Formules sommatoires et systèmes de numération liés aux substitutions, Séminaire de théorie des nombres de Bordeaux (1987/88), Exposé n° 39.Google Scholar
  12. J.-M. Dumont & A. Thomas, Systèmes de numération et fonctions fractal es relatifs aux substitutions, Theor. Comp. Sci. 65 (1989), 153–169.MathSciNetzbMATHCrossRefGoogle Scholar
  13. J.-M. Dumont & A. Thomas, Digital sum problems and substitutions on a finite alphabet, J. Number Theory 39 (1991), 351–366.MathSciNetzbMATHCrossRefGoogle Scholar
  14. P. Flajolet & L. Ramshaw, A note on Gray code and odd-even merge, SIAM J. Comp. 9 (1980), 142–158.MathSciNetzbMATHCrossRefGoogle Scholar
  15. P. Flajolet, P. Grabner, P. Kirschenhoffer, H. Prodinger & R. Tichy, Mellin transforms and asymptotics: digital sums. Theoret. Comput Sci. 123 (1994), no. 2, 291–314.MathSciNetzbMATHCrossRefGoogle Scholar
  16. D. M. Foster, Estimates for a remainder term associated with the sum of digits function, Glasgow Math. J. 29 (1987), 109–129.MathSciNetzbMATHCrossRefGoogle Scholar
  17. P. J. Grabner & R. F. Tichy, Contributions to digit expansions with respect to linear recurrences, J. Number Theory 36 (1990), 160–169.MathSciNetzbMATHCrossRefGoogle Scholar
  18. H. Harboth, Number of odd binomial coefficients, Proc. Amer. Math. Soc. 63 (1977), 19–22.CrossRefGoogle Scholar
  19. J. Honkala, On number systems with negative digits, Ann. Acad. Sci. Fenn Series A. I. Mathematica 14 (1989), 149–156.MathSciNetzbMATHGoogle Scholar
  20. R. E. Kennedy & C. N. Cooper, An extension of a theorem by Cheo and Yien concerning digital sums, Fibonacci Quarterly 29 (1991), 145–149.MathSciNetGoogle Scholar
  21. P. Kirschenhoffer, Subblock occurrences in the q-ary representation of n, Siam J. Alg. Disc. Meth. 4 (1983), 231–236.CrossRefGoogle Scholar
  22. P. Kirschenhoffer & H. Prodinger, Subblock occurrences in positional number systems and Gray code representation, J. Inf. Opt Sci. 5 (1984), 29–42.Google Scholar
  23. P. Kirschenhoffer & R. F. Tichy, On the distribution of digits in Cantor representations of integers, J. Number Theory 18 (1984), 121–134.MathSciNetCrossRefGoogle Scholar
  24. G. Larcher & R. F. Tichy, Some number-theoretical properties of generalized sum-of-digit functions, Acta Arith. 52 (1989) 183–196MathSciNetzbMATHGoogle Scholar
  25. M. D. Mac Ilroy, The number of l’s in binary integers: bounds and extremal properties, SIAM J. Comput. 3 (1974), 225–261.Google Scholar
  26. L. Mirsky, A theorem on representations of integers in the scale of r, Scripta Math. 15 (1949), 11–12.MathSciNetzbMATHGoogle Scholar
  27. D. J. Newman, On the number of binary digits in a multiple of three, Proc. Amer. Math. Soc. 21 (1969), 719–721.MathSciNetzbMATHCrossRefGoogle Scholar
  28. A. Pethö & R. F. Tichy, On digit expansions with respect to linear recurrences, J. Number Theory 33 (1989), 243–256.MathSciNetzbMATHCrossRefGoogle Scholar
  29. H. Prodinger, Generalizing the “sum of digits” function, SIAM J. Alg. Disc. Meth. 3 (1982), 35–42.MathSciNetzbMATHCrossRefGoogle Scholar
  30. P. Shiu & A. H. Osbaldestin, A correlated digital sum problem associated with sums of three squares, Bull. London Math. Soc. 21 (1989), 369–374.MathSciNetzbMATHCrossRefGoogle Scholar
  31. A. H. Stein, Exponential sums related to binomial coefficient parity, Proc. Amer. Math. Soc. 80 (1980), 526–530.MathSciNetzbMATHCrossRefGoogle Scholar
  32. A. H. Stein, Exponential sums of an iterate of the binary sum of digit function, Indiana Univ. Math. J. 31 (1982), 309–315.MathSciNetzbMATHCrossRefGoogle Scholar
  33. A. H. Stein, Exponential sums of sum-of-digit functions, III. J. Math. 30 (1986), 660–675.zbMATHGoogle Scholar
  34. A. H. Stein, Exponential sums of digit counting functions, in: J.M. de Konincket C. LeVesque (eds.), Théorie des Nombres (Québec 5–18/7/87), 861–868, Walter de Gruyter, Berlin-New York, 1989.Google Scholar
  35. K. B. Stolarsky, Digital sums and binomial coefficients, Notices Amer. Math. Soc. 22 (1975), A 669, Abstract # 728-A7.Google Scholar
  36. K. B. Stolarski, Power and exponential sums related to binomial digit parity, SIAM J. Appl Math. 32 (1977), 717–730.MathSciNetCrossRefGoogle Scholar
  37. J. R. Trollope, Generalized bases and digital stuns, ;Amer. Math. Monthly 74 (1967), 690–694.MathSciNetzbMATHCrossRefGoogle Scholar
  38. J. R. Trollope, An explicit expression for binary digital sums, Math. Mag. 41 (1967), 21–25.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Gérald Tenenbaum
    • 1
  1. 1.Département de MathématiquesUniversité Nancy 1VandœuvreFrance

Personalised recommendations