Skip to main content

The Dimension of Random Graph Orders

  • Chapter
The Mathematics of Paul Erdös II

Part of the book series: Algorithms and Combinatorics ((AC,volume 14))

Summary

The random graph order P n, p is obtained from a random graph G n, p on [n] by treating an edge between vertices i and j, with i ≺ j in [n], as a relation i < j, and taking the transitive closure. This paper forms part of a project to investigate the structure of the random graph order P n, p throughout the range of p = p(n). We give bounds on the dimension of P n, p for various ranges. We prove that, if p log log n → ∞ and ε > 0 then, almost surely,

$$\left( {1 - \in } \right)\sqrt {\frac{{\log n}} {{\log (1/q)}}} \leqslant \dim P_{n,p} \leqslant (1 + \in )\sqrt {\frac{{4\log n}} {{3\log (1/q)}}} .$$

We also prove that there are constants c 1, c 2 such that, if p log n → 0 and p ≥ log n/n, then

$$c_1 p^{ - 1} \leqslant \dim P_{n,p} \leqslant c_2 p^{ - 1} .$$

We give some bounds for various other ranges of p(n), but several questions are left open.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Albert and A. Frieze, Random graph orders, Order 6 (1989) 19–30.

    Article  MathSciNet  MATH  Google Scholar 

  2. N. Alon, B. Bollobás, G. Brightwell and S. Janson, Linear extensions of a random partial order, Annals of Applied Prob. 4 (1994) 108–123.

    Article  MATH  Google Scholar 

  3. A. Barak and P. Erdős, On the maximal number of strongly independent vertices in a random acyclic directed graph, SIAM J. Algebraic and Disc. Methods 5 (1984) 508–514.

    Article  MATH  Google Scholar 

  4. B. Bollobás, Random Graphs, Academic Press, London, 1985, xv+447pp.

    MATH  Google Scholar 

  5. B.Bollobás and G.Brightwell, The width of random graph orders, submitted.

    Google Scholar 

  6. B.Bollobás and G.Brightwell, The structure of random graph orders, submitted.

    Google Scholar 

  7. B. Bollobás and I. Leader, Isoperimetric inequalities and fractional set systems, J. Combinatorial Theory (A) 56 (1991) 63–74.

    Article  MATH  Google Scholar 

  8. G. Brightwell, Models of random partial orders, in Surveys in Combinatorics 1993, Invited papers at the 14th British Combinatorial Conference, K. Walker Ed., Cambridge University Press (1993).

    Google Scholar 

  9. P. Erdős, H. Kierstead and W. T. Trotter, The dimension of random ordered sets, Random Structures and Algorithms 2 (1991) 253–275.

    Article  MathSciNet  Google Scholar 

  10. P. Erdős and A. Renyi, On random graphs I, Publ. Math. Debrecen 6 (1959) 290–297.

    MathSciNet  Google Scholar 

  11. P. Erdős and A. Renyi, On the evolution of random graphs, Publ. Math. Inst. Hungar. Acad. Sci. 5 (1960) 17–61.

    Google Scholar 

  12. Z. Fiiredi and J. Kahn, On the dimensions of ordered sets of bounded degree, Order 3 (1986) 17–20.

    Google Scholar 

  13. M. Hall, Combinatorial Theory, 2nd Edn., Wiley-Interscience Series in Discrete Mathematics (1986) xv+440pp.

    Google Scholar 

  14. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th Edn., Oxford University Press (1979) xvi+426pp.

    MATH  Google Scholar 

  15. I. Leader, Discrete isoperimetric inequalities, in Probabilistic Combinatorics and its Applications, Proceedings of Symposia in Applied Mathematics 44, American Mathematical Society, Providence (1991).

    Google Scholar 

  16. C. M. Newman, Chain lengths in certain directed graphs, Random Structures and Algorithms 3 (1992) 243–253.

    Article  MathSciNet  MATH  Google Scholar 

  17. C. M. Newman and J. E. Cohen, A stochastic theory of community food webs: IV. Theory of food chain lengths in large webs, Proc. R. Soc. London Ser. B 228 (1986) 355–377.

    Article  Google Scholar 

  18. K. Simon, D. Crippa and F. Collenberg, On the distribution of the transitive closure in random acyclic digraphs, Lecture Notes in Computer Science 726 (1993) 345–356.

    Google Scholar 

  19. W. T. Trotter, Inequalities in dimension theory for posets, Proc. Amer. Math. Soc. 47 (1975) 311–316.

    Article  MathSciNet  MATH  Google Scholar 

  20. W. T. Trotter, Embedding finite posets in cubes, Discrete Math. 12 (1975) 165–172.

    Article  MathSciNet  MATH  Google Scholar 

  21. W. T. Trotter, Combinatorics and Partially Ordered Sets: Dimension Theory, The Johns Hopkins University Press, Baltimore (1992) xiv+307pp

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bollobás, B., Brightwell, G. (1997). The Dimension of Random Graph Orders. In: Graham, R.L., Nešetřil, J. (eds) The Mathematics of Paul Erdös II. Algorithms and Combinatorics, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60406-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60406-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64393-4

  • Online ISBN: 978-3-642-60406-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics