Advertisement

Reconstruction Problems for Digraphs

  • M. Aigner
  • E. Triesch
Part of the Algorithms and Combinatorics book series (AC, volume 14)

Summary

Associate to a finite directed graph G(V, E) its out-degree resp. in degree sequences d +, d and the corresponding neighborhood lists N +, N (when G is a labeled graph). We discuss various problems when sequences resp. lists of sets can be realized as degree sequences resp. neighborhood lists of a directed graph.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Aigner: Uses of the diagram lattice. Mitteilungen Math. Sem. Giessen 163 (1984), 61–77.MathSciNetGoogle Scholar
  2. 2.
    M. Aigner, E. Triesch: Reconstructing a graph from its neighborhood list. Combin. Probab. Comput. 2 (1993), 103–113.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    M. Aigner, E. Triesch: Realizability and uniqueness in graphs. Discrete Math. 136 (1994), 3–20.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    P. Erdős, T. Gallai: Graphen mit Punkten vorgeschriebenen Grades. Math. Lapok 11 (1960), 264–274.Google Scholar
  5. 5.
    D. R. Fulkerson: Zero-one matrices with zero trace. Pacific J. Math. 10 (1960), 831–836.MathSciNetzbMATHGoogle Scholar
  6. 6.
    D. R. Fulkerson, H. J. Ryser: Multiplicities and minimal widths in (0, 1) matrices. Canad. J. Math. 11 (1962), 498–508.MathSciNetCrossRefGoogle Scholar
  7. 7.
    D. Gale: A theorem on flows in networks. Pacific J. Math. 7 (1957), 1073–1082.MathSciNetzbMATHGoogle Scholar
  8. 8.
    M. R. Garey, D. S. Johnson: Computers and Intractability: A guide to the theory of NP-completeness. Freeman, San Francisco, 1979.Google Scholar
  9. 9.
    H. G. Landau: On dominance relations and the structure of animal societies, III: the condition for a score structure. Bull. Math. Biophys. 15 (1955), 143–148.CrossRefGoogle Scholar
  10. 10.
    A. Lubiw: Some NP-complete problems similar to graph isomorphism. SI AM J. Computing 10 (1981), 11–21.MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    H. J. Ryser: Combinatorial properties of matrices of zeros and ones. Canad. J. Math. 9 (1957), 371–377.MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    G. Sabidussi: The composition of graphs. Duke Math. J. 26 (1959), 693–696.MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    V.T. Sós: Problem. In: Combinatorics (A. Hajnal, V.T. Sós, eds.), Coll. Math. Soc. J. Bolyai 18, North Holland, Amsterdam (1978), 1214.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • M. Aigner
    • 1
  • E. Triesch
    • 2
  1. 1.Math. Institut, Freie Universität, BerlinBerlinGermany
  2. 2.Forschungsinstitut für Diskrete MathematikBonnGermany

Personalised recommendations