The Mathematics of Paul Erdös II pp 93-98 | Cite as
Reflections on a Problem of Erdős and Hajnal
Chapter
Summary
We consider some problems suggested by special cases of a conjecture of Erdős and Hajnal.
Preview
Unable to display preview. Download preview PDF.
References
- 1.C. Berge, D. Duchet, Strongly perfect graphs, in Topics on Perfect graphs, Annals of Discrete Math. Vol 21 (1984) 57–61MathSciNetGoogle Scholar
- 2.Z. Blázsik, M. Hujter, A. Pluhár, Zs. Tuza, Graphs with no induced C 4 and 2K 2, Discrete Math. 115 (1993) 51–55.MathSciNetzbMATHCrossRefGoogle Scholar
- 3.F.R.K. Chung, On the covering of graphs, Discrete Math. 30 (1980) 89–93.MathSciNetzbMATHCrossRefGoogle Scholar
- 4.P. Erdős, Graph Theory and Probability II., Canadian J.Math. 13, (1961) 346–352.CrossRefGoogle Scholar
- 5.P. Eődos, Some Remarks on the Theory of Graphs, Bulletin of the American Mathematics Society, 53 (1947), 292–294.CrossRefGoogle Scholar
- 6.P. Erdős, A. Gyárfás, T. Luczak, Graphs in which each C 4 spans K 4 submitted.Google Scholar
- 7.P. Erdős, A. Hajnal, Ramsey Type Theorems, Discrete Applied Math. 25 (1989) 37–52.CrossRefGoogle Scholar
- 8.J. L. Fouquet, A decomposition for a class of \(\left( {P_5 ,\bar P_5 } \right)\)-free graphs, preprint.Google Scholar
- 9.A. Gyárfás, A Ramsey type theorem and its applications to relatives of Helly’s theorem, Periodica Math. Hung. 3 (1973) 299–304.zbMATHCrossRefGoogle Scholar
- 10.A. Gyárfás, Problems from the world surrounding perfect graphs, Zastowania Matematyki, Applicationes Mathematicae, XIX 3–4 (1987) 413–441.Google Scholar
- 11.Hirschfeld, Finite Projective Spaces of three dimensions, Clarendon Press, Oxford, 1985.zbMATHGoogle Scholar
- 12.L. Lovász, Perfect Graphs, in Selected Topics in Graph Theory 2. Academic Press (1983) 55–87.Google Scholar
- 13.H. J. Prömel, A. Steger, Almost all Berge graphs are perfect, Report 91715, Forschungsinstitut fur Diskrete Mathematik, Bonn.Google Scholar
- 14.D. Seinsche, On a property of the class of n-colorable graphs, Journal of Combinatorial Theory B. 16 (1974) 191–193.MathSciNetzbMATHCrossRefGoogle Scholar
- 15.J. Spencer, Ten lectures on the Probabilistic method, CBMS-NSF Conference Series, 52.Google Scholar
- 16.S. Wagon, A bound on the chromatic number of graphs without certain induced subgraphs, J. Combinatorial Theory B. 29 (1980) 345–346.MathSciNetzbMATHCrossRefGoogle Scholar
Copyright information
© Springer-Verlag Berlin Heidelberg 1997