Advertisement

Reflections on a Problem of Erdős and Hajnal

  • András Gyárfás
Part of the Algorithms and Combinatorics book series (AC, volume 14)

Summary

We consider some problems suggested by special cases of a conjecture of Erdős and Hajnal.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Berge, D. Duchet, Strongly perfect graphs, in Topics on Perfect graphs, Annals of Discrete Math. Vol 21 (1984) 57–61MathSciNetGoogle Scholar
  2. 2.
    Z. Blázsik, M. Hujter, A. Pluhár, Zs. Tuza, Graphs with no induced C 4 and 2K 2, Discrete Math. 115 (1993) 51–55.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    F.R.K. Chung, On the covering of graphs, Discrete Math. 30 (1980) 89–93.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    P. Erdős, Graph Theory and Probability II., Canadian J.Math. 13, (1961) 346–352.CrossRefGoogle Scholar
  5. 5.
    P. Eődos, Some Remarks on the Theory of Graphs, Bulletin of the American Mathematics Society, 53 (1947), 292–294.CrossRefGoogle Scholar
  6. 6.
    P. Erdős, A. Gyárfás, T. Luczak, Graphs in which each C 4 spans K 4 submitted.Google Scholar
  7. 7.
    P. Erdős, A. Hajnal, Ramsey Type Theorems, Discrete Applied Math. 25 (1989) 37–52.CrossRefGoogle Scholar
  8. 8.
    J. L. Fouquet, A decomposition for a class of \(\left( {P_5 ,\bar P_5 } \right)\)-free graphs, preprint.Google Scholar
  9. 9.
    A. Gyárfás, A Ramsey type theorem and its applications to relatives of Helly’s theorem, Periodica Math. Hung. 3 (1973) 299–304.zbMATHCrossRefGoogle Scholar
  10. 10.
    A. Gyárfás, Problems from the world surrounding perfect graphs, Zastowania Matematyki, Applicationes Mathematicae, XIX 3–4 (1987) 413–441.Google Scholar
  11. 11.
    Hirschfeld, Finite Projective Spaces of three dimensions, Clarendon Press, Oxford, 1985.zbMATHGoogle Scholar
  12. 12.
    L. Lovász, Perfect Graphs, in Selected Topics in Graph Theory 2. Academic Press (1983) 55–87.Google Scholar
  13. 13.
    H. J. Prömel, A. Steger, Almost all Berge graphs are perfect, Report 91715, Forschungsinstitut fur Diskrete Mathematik, Bonn.Google Scholar
  14. 14.
    D. Seinsche, On a property of the class of n-colorable graphs, Journal of Combinatorial Theory B. 16 (1974) 191–193.MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    J. Spencer, Ten lectures on the Probabilistic method, CBMS-NSF Conference Series, 52.Google Scholar
  16. 16.
    S. Wagon, A bound on the chromatic number of graphs without certain induced subgraphs, J. Combinatorial Theory B. 29 (1980) 345–346.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • András Gyárfás
    • 1
  1. 1.Hungarian Academy of SciencesComputer and Automation InstituteBudapestHungary

Personalised recommendations