Insulators, Semiconductors, Metals

  • Isaak M. Tsidilkovski
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 116)


The theory of crystalline solids rests on the very important concept of an ideal crystal. By an ideal crystal one understands a strictly periodically arranged assembly of atoms (ions, molecules). Such a regular configuration of particles is called a crystal lattice. To describe a crystal lattice it suffices to know how the atoms are arranged in the lattice unit cell, translation of which enables construction of the entire lattice. The unit cell has the shape of a parallelepiped, the choice of which is determined by the crystal’s symmetry, that is, the property of the crystal to map into itself under rotation, reflection and translation operations.


Crystallization Anisotropy Mercury Cadmium Boron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 3.1
    W. Ludwig, C. Falter:Symmetries in Physics, 2nd edn., Springer Ser. Solid-State Sci., Vol.64 (Springer, Berlin, Heidelberg 1995)Google Scholar
  2. 3.2
    B.K. Vainshtein: Fundamentals of Crystals, 2nd edn., Modern Crystallography 1 (Springer, Berlin, Heidelberg 1994)Google Scholar
  3. 3.3
    I.M. Tsidilkovski: All-Union Conf. on the Physics of Semiconductors, Leningrad (Nauka, Leningrad 1955)Google Scholar
  4. 3.4
    I.M. Tsidilkovski: Zh. Tekn. Fiz. 27, 1744 (1957)Google Scholar
  5. 3.5
    O. Erdman: J. Prakt. Chemie 52, 428 (1851)Google Scholar
  6. 3.6
    A.W. Ewald, O.N. Tufte: J. Appl. Phys. 29, 1007(1958)CrossRefGoogle Scholar
  7. 3.7
    G. Bush, R. Kern: Solid State Physics: 11, 1 (Academic, New York 1960)Google Scholar
  8. 3.8
    J.H. Becker: Ph.D. Thesis, Cornell University (1957)Google Scholar
  9. 3.9
    E.E. Kohnke, A. W. Ewald: Phys. Rev. 102, 1481(1956)CrossRefGoogle Scholar
  10. 3.10
    S.H. Groves, W. Paul: Phys. Rev. Lett. 11, 194(1963)CrossRefGoogle Scholar
  11. 3.11
    F.H. Pollak, M. Cardona, C.W. Higginbotham, F. Herman, J.P. Van Dyke: Phys. Rev. B 2, 352 (1970)CrossRefGoogle Scholar
  12. 3.12
    F. Herman: Electronics 1, 103 (1955)CrossRefGoogle Scholar
  13. 3.13
    D.J. Chadi, J.P. Walter, M.L. Cohen, I. Petroff, M. Balkanski: Phys. Rev. B 5, 3058(1972)CrossRefGoogle Scholar
  14. 3.14
    J.M. Luttinger: Phys. Rev. 102, 1030(1956)CrossRefGoogle Scholar
  15. 3.15
    E.O. Kane: J. Phys. Chem. Sol. 1, 249(1957)CrossRefGoogle Scholar
  16. 3.16
    L.V. Keldysh, Y. V. Kopaev: Fiz. Tverd. Tela 6, 2791 (1964)Google Scholar
  17. 3.17
    B.J. Halperin, T.M. Rice: Rev. Mod. Phys. 40, 775 (1968)CrossRefGoogle Scholar
  18. 3.18
    A. Abrikosov, S.D. Beneslavsky: Zh. Exp. Teor. Fiz. 59, 1280(1970)Google Scholar
  19. 3.19
    A. Abrikosov: Zh. Exp. Teor. Fiz. 66, 1443 (1974);J. Low Temp. Phys. 18, 185 (1975)Google Scholar
  20. 3.20
    B.L. Gelmont: Fiz. Tekn. Poluprovodn. 9, 1912 (1975)Google Scholar
  21. 3.21
    V.I. Ivanov-Omskii, A.S. Mehtiev, S.A. Rustambekova, E.N. Ukraintsev: Phys. Status Solidi (b) 119, 159 (1983)CrossRefGoogle Scholar
  22. 3.22
    B L. Gelmont, V.I. Ivanov-Omskii, B.T. Kolomiets, V.K. Ogorodnikov, K.P. Smekalova: Fiz. Tekn. Poluprovodn. 5, 266(1971)Google Scholar
  23. 3.23
    W. Giriat, E. A. Neifield, I.M. Tsidilkovski: Fiz. Tekn. Poluprovodn. 9, 188 (1975)Google Scholar
  24. 3.24
    B.L. Gelmont, V.I. Ivanov-Omskii, N.N. Konstantinova, D.V. Mashovetz, R.V. Parfeniev, I.N. Yassievich: Zh. Exp. Teor. Fiz. 71, 1572 (1976)Google Scholar
  25. 3.25
    I.M. Tsidilkovski, V. V. Schennikov, N.G. Gluzman: Fiz. Tverd. Tela 24, 2658 (1982);ibid. Fiz. Tekn. Poluprovodn. 17, 958(1983)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Isaak M. Tsidilkovski
    • 1
  1. 1.Institute of Metal PhysicsUral Division of Russian Academy of SciencesEkaterinburgRussia

Personalised recommendations