Skip to main content

UItraviolet-Induced Photolesions: Repair and Mutagenesis

  • Conference paper
Book cover Risk and Progression Factors in Carcinogenesis

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 143))

Abstract

There is convincing evidence that the structure of chromatin may influence both the induction and processing of DNA damage within various parts of the genome that exhibit diverse molecular structures and activities. For a variety of lesions it has been shown that nucleotide excision repair (NER) takes place preferentially in transcriptionally active DNA (Mullenders and Smith 1994). Cyclobutane pyrimidine dimers (CPD) induced by ultraviolet (UV) light as well as DNA adducts induced by chemical carcinogens such as benzo(a)pyrene diol epoxide, aflatoxin B1 and psoralen are more rapidly repaired in transcriptionally active housekeeping genes than in inactive tissue specific genes, ribosomal genes, regions of noncoding DNA, or the genome overall (Bohr et al. 1985; Mellon et al. 1986; Venema et al. 1990; Ruven et al. 1993). However, from the analysis of repair of other bulky lesions in specific sequences in both rodent and human cells it has become clear that not all bulky lesions are preferentially repaired in active genes and that there are no simple rules predicting whether a given lesion is repaired preferentially or not (Mullenders and Smith 1994).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams RLP (1990) DNA methylation. Biochem J 265: 309–320

    PubMed  CAS  Google Scholar 

  • Bohr VA, Smith CA, Okumoto DS, Hanawalt PC (1985) DNA repair in an active gene: removal of pyrimidine dimers from the DHFR gene of CHO cells is much more efficient than in the genome overall. Cell 40: 359–369

    Article  PubMed  CAS  Google Scholar 

  • Christians FC, Hanawalt PC (1992) Inhibition of transcription and strand-specific DNA repair by α-amanitin in Chinese hamster ovary cells. Mutat Res 274: 93–101

    PubMed  CAS  Google Scholar 

  • De Cock JGR, van Hoffen A, Wijnands J, Molenaar G, Lohman PHM, Eeken JCJ (1992) Repair of UV-induced 6–4 photoproducts measured in individual genes in the Drosophila embryonic Kc cell line. Nucleic Acids Res 20: 4789–4793

    Article  PubMed  Google Scholar 

  • Drapkin R, Sanear A, Reinberg D (1994) Where transcription meets repair. Cell 77: 9–12

    Article  PubMed  CAS  Google Scholar 

  • Drobetsky EA, Grosovsky AJ, Glickman BW (1987) The specificity of UV-induced mutations at an endogenous locus in mammalian cells. Proc Natl Acad Sci USA 84; 9103–9107

    Article  PubMed  CAS  Google Scholar 

  • Evans MK, Robbins JH, Ganges MB, Tarone RE, Nairn RS, Bohr VA (1993) Gene-specific DNA repair in xeroderma pigmentosum complementation groups A, C, D and F. J Biol Chem 268: 4839–4847

    PubMed  CAS  Google Scholar 

  • Ho L, Bohr VA, Hanawalt PC (1989) Demethylation enhances removal of pyrimidine dimers from the genome overall and from specific sequences in Chinese hamster ovary cells. Mol Cell Biol 1594–1603

    Google Scholar 

  • Jackson DA, Hassan AB, Errington RJ, Cook PR (1993) Visualization of focal sites of transcription within human nuclei. EMBO J 12: 1059–1065

    PubMed  CAS  Google Scholar 

  • Kantor GJ, Barsalou LS, Hanawalt PC (1990) Selective repair of specific chromatin domains in UV-irradiated cells from xeroderma pigmentosum complementation group C. Mutat Res 235: 171–180

    PubMed  CAS  Google Scholar 

  • Leadon SA, Lawrence DA (1991) Preferential repair of DNA damage on the transcribed strand of the human metallothionein gene requires RNA polymerase II. Mutat Res 255: 67–78

    PubMed  CAS  Google Scholar 

  • Madhani HD, Bohr VA, Hanawalt PC (1986) Differential DNA repair in the transcriptionally active and inactive proto-oncogenes c-able and c-mos. Cell 45: 417–423

    Article  PubMed  CAS  Google Scholar 

  • McGregor WG, Chen RH, Lukash L, Mäher VM, McCormick JJ (1991) Cell cycle- dependent strand bias for UV-induced mutations in the transcribed strand of excision repair-proficient human fibroblasts but not in repair-deficient cells. Mol Cell Biol 11: 1927–1934

    PubMed  CAS  Google Scholar 

  • Mellon I, Bohr VA, Smith CA, Hanawalt PC (1986) Preferential DNA repair of an active gene in human cells. Proc Natl Acad Sci USA 83: 8878–8882

    Article  PubMed  CAS  Google Scholar 

  • Mellon I, Spivak G, Hanawalt PC (1987) Selective removal of transcription blocking DNA damage from the transcribed strand of the mammalian DHFR gene. Cell 51: 241–249

    Article  PubMed  CAS  Google Scholar 

  • Menichini P, Vrieling H, van Zeeland AA (1991) Strand specific mutation spectra in repair proficient and repair deficient hamster cells. Mutat Res 251: 143–155

    Article  PubMed  CAS  Google Scholar 

  • Mitchell DL (1988) The biology of the 6-4 photoproduct. Photochem Photobiol 49: 805–819

    Article  Google Scholar 

  • Mitchell DL, Nguyen TD, Cleaver JE (1990) Nonrandom induction of pyrimidine- pyrimidone 6-A photoproducts in ultraviolet-irradiated human chromatin. J Biol Chem 265: 5353–5356

    PubMed  CAS  Google Scholar 

  • Mullenders LHF, Smith CA (1994) DNA repair in specific sequences and genomic regions. In: Tardiff RG, Lohman PHM, Wogan GN (eds) Methods to assess DNA damage and repair. Interspecies comparisons. Scientific Group on Methodologies for the Safety Evaluation of Chemicals (SGOMSEC). Wiley, Chicester, pp 141–156

    Google Scholar 

  • Ramanathan B, Smerdon M J (1989) Enhanced DNA repair synthesis in hyper-acetylated nucleosomes. J Biol Chem 264 (19): 11026–11034

    PubMed  CAS  Google Scholar 

  • Ruven HJT, Berg RJW, Seelen CMJ, Dekkers JAJ, Lohman PHM, Mullenders LHF, van Zeeland AA (1993) Ultraviolet-induced cyclobutane pyrimidine dimers are selectively removed from transcriptionally active genes in the epidermis of the hairless mouse. Cancer Res 53: 1642–1645

    PubMed  CAS  Google Scholar 

  • Ruven HJT, Seelen CMJ, Lohman PHM, van Kranen H, van Zeeland AA, Mullenders LHF (1994) Strand-specific removal of cyclobutane pyrimidine dimers from the p53 gene in the epidermis of UV-B irradiated hairless mice. Oncogene 9: 3427–3432

    PubMed  CAS  Google Scholar 

  • Schaeffer L, Roy R, Humbert S, Moncollin V, Vermeulen W, Hoeijmakers JHJ, Chambon P, Egly JM (1993) DNA repair helicase: a component of BTF2 (TFIIH) basic transcription factor. Science 260: 58–63

    Article  PubMed  CAS  Google Scholar 

  • Thomas DC, Okumoto DS, Sanear A, Bohr VA (1989) Preferential repair of 6–4 photoproducts in the dihydrofolate reductase gene of the Chinese hamster ovarv cells. J Biol Chem 264: 18005–18010

    PubMed  CAS  Google Scholar 

  • van Hoffen A, Venema J, Meschini R, van Zeeland AA, Mullenders LHF (1995) Transcription coupled repair removes both cyclobutane pyrimidine dimers and 6–4 photoproducts with equal efficiency and in a sequential way from transcribed DNA in xeroderma pigmentosum group C fibroblasts. EMBO J 14: 360–367

    PubMed  Google Scholar 

  • Venema J, van Hoffen A, Natarajan AT, van Zeeland AA, Mullenders LHF (1990) The residual repair capacity of xeroderma pigmentosum group C fibroblasts is highly specific for transcriptionally active DNA. Nucleic Acids Res 18: 443–148

    Article  PubMed  CAS  Google Scholar 

  • Venema J, Bartosova Z, Natarajan AT, van Zeeland AA, Mullenders LHF (1992) Transcription affects the rate but not the extent of repair of cyclobutane pyrimidine dimers in the human adenosine deaminase gene. J Biol Chem 267: 8852–8856

    PubMed  CAS  Google Scholar 

  • Vreeswijk MPG, van Hoffen A, Westland BE, Vrieling H, van Zeeland AA, Mullenders LHF (1994) Analysis of repair of cyclobutane pyrimidine dimers and pyrimidine (6- 4) pyrimidone photoproducts in transcriptionally active and inactive genes in Chinese hamster cells. J Biol Chem 16: 31858–31863

    Google Scholar 

  • Vrieling H, van Rooyen M-L, Groen NA, Zdzienicka MZ, Simons JWIM, Lohman PHM, van Zeeland AA (1989) DNA strand specificity for UV-induced mutations in mammalian cells. Mol Cell Biol 9: 1277–1283

    PubMed  CAS  Google Scholar 

  • Vrieling H, Venema J, van Rooijen MI, van Hoffen A, Menichini P, Zdzienicka MZ, Simons JWIM, Mullenders LHF, van Zeeland AA (1991) Strand specificity for UV- induced DNA repair and mutations in the Chinese hamster HPRT gene. Nucleic Acids Res 19: 2411–2415

    Article  PubMed  CAS  Google Scholar 

  • Wood RD (1985) Pyrimidine dimers are not the principal premutagenic lesions induced in lambda phage DNA by ultraviolet light. J Mol Biol 184: 577–585

    Article  PubMed  CAS  Google Scholar 

  • Zdzienicka MZ, Venema J, Mitchell DL, van Hoffen A, van Zeelanf AA, Vrieling H. Mullenders LHF, Lohman PHM, Simons JWIM (1992) 6–4 Photoproducts and not cyclobutane pyrimidine dimers are the main UV-induced mutagenetic lesions in Chinese hamster cells. Mutat Res 273: 73–83

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

Mullenders, L.H.F., van Hoffen, A., Vreeswijk, M.P.G., Ruven, HJ., Vrieling, H., van Zeeland, A.A. (1997). UItraviolet-Induced Photolesions: Repair and Mutagenesis. In: Müller-Hermelink, H.K., Neumann, HG., Dekant, W. (eds) Risk and Progression Factors in Carcinogenesis. Recent Results in Cancer Research, vol 143. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60393-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60393-8_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64385-9

  • Online ISBN: 978-3-642-60393-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics