Skip to main content

The Role of Workhorse Protein Kinases in Coordinating DNA Metabolism and Cell Growth

  • Conference paper
Risk and Progression Factors in Carcinogenesis

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 143))

Abstract

Cells are continually experiencing various forms of DNA damage. External factors such as environmental agents and radiation or internal factors such as oxidative damage or replication errors can all lead to potentially mutagenic or lethal DNA lesions. UV irradiation and DNA strand interruptions, for example, stimulate transcription and genetic recombination, lead to the activation of DNA repair proteins, cause cell cycle arrest, and initiate nuclear signal transduction cascades (Hartwell 1992; Hartwell and Weinart 1989; Hibi et al. 1993).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al-Khodairy F, Carr AM (1992) DNA repair mutants defining G2 checkpoint pathways in Schizosaccharomyces pombe. EMBO J 11: 1343–1350

    PubMed  CAS  Google Scholar 

  • Al-Khodairy F, Fotou E, Sheldrick KS, Griffiths DJF, Lehmann AR, Carr AM (1994) Identification and characterization of new elements involved in checkpoint and feedback controls in fission yeast. Mol Biol Cell 5: 141–160

    Google Scholar 

  • Brockman JL, Anderson RA (1991) Casein kinase I is regulated by phosphatidylinositol 45-bisphosphate in native membranes J Biol Chem 266: 2508–2512

    CAS  Google Scholar 

  • Brockman JL, Gross SD, Sussman MR, Anderson RA (1992) Cell cycle-dependent localizaton of casein kinase I to mitotic spindles. Proc. Natl Acad Sci USA 89: 9454–9458

    Google Scholar 

  • Carr AM, Hoekstra MF (1995) The cellular responses to DNA damage. Trends Cell Biol 5: 32–40

    Article  PubMed  CAS  Google Scholar 

  • Ciegeleska A, Virshup DM (1993) Control of simian virus 40 DNA replication by the HeLa cell nuclear casein kinase I. Mol Cell Biol 13: 1202–1211

    Google Scholar 

  • Cieglska A, Moarefi I, Fanning E, Virshup DM (1994) T-antigen kinase inhibits simian virus 40 DNA replication by phosphorylation of intact T antigen on serines 120 and 123 J Virol 68: 269–275

    Google Scholar 

  • de Groot RP, den Hertog J, Vandenheede JR, Goris J, Sassone-Corsi P (1993) Multiple and cooperative phosphorylation events regulate the CREM activator. EMBO J 12: 3903–3911

    PubMed  Google Scholar 

  • DeMaggio AJ, Lindberg RA, Hunter T, Hoekstra MF (1992) The budding yeast HRR25 gene product is a casein kinase I isoform. Proc Natl Acad Sci USA 89: 7008–1012

    Article  PubMed  CAS  Google Scholar 

  • Dhillon N, Hoekstra MF (1994) Characterization of two protein kinases from Schizo saccharomyces pombe involved in the regulation of DNA repair. EMBO J 13: 2777–2788

    PubMed  CAS  Google Scholar 

  • DiLenardo A, Linke SP, Clarkin K, Wahl GM (1994) DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cipl in normal human fibroblasts. Genes Dev 8: 2540–2551

    Article  Google Scholar 

  • Enoch T, Nurse P (1990) Mutations of fission yeast cell cycle control genes abolishes dependene of mitosis on DNA replication. Cell 60: 665–613

    Article  PubMed  CAS  Google Scholar 

  • Featherstone C, Russell P (1991) Fission yeast pl07weel mitotic inhibitor is a tyrosine/ serine kinase. Nature 349: 808–811

    Article  PubMed  CAS  Google Scholar 

  • Fish K, Cegielska A, Getman M, Landes G, Virshup DM (1995) Isolation and characterization of human casein kinase I epsilon, a novel member of the CKI gene family. J Biol Chem (in press)

    Google Scholar 

  • Ford JC, Al-Khodairy F, Fotou F, Sheldrick KS, Griffiths, Carr AM (1994) 14-3-3 protein homologs required for the DNA damage checkpoint in fission yeast. Science 265: 533–535

    Google Scholar 

  • Gould KL, Nurse P (1989) Tyrosine phosphorylation of the fission yeast cdc2+ protein kinase regulates entry into mitosis. Nature 342: 39–45

    Article  PubMed  CAS  Google Scholar 

  • Guesdon F, Freshney N, Waller RJ, Rawlinson L, Saklatavala J (1993) Interleukin-1 and tumor necrosis factor stimulate two novel protein kinases that phosphorylate heat shock protein hsp27 and betacasein. J Biol Chem 268: 4236–4243

    PubMed  CAS  Google Scholar 

  • Hagan I, Yanagida M (1990) Novel potential mitotic motor protein encoded by the fission yeast cut7+ gene. Nature 347: 563–566

    Article  PubMed  CAS  Google Scholar 

  • Hagan I, Yanagida M (1992) Kinesin-related cut7 protein associates with mitotic and meiotic spindles in fission yeast. Nature 356: 74–76

    Article  PubMed  CAS  Google Scholar 

  • Hartwell LH (1992) Defects in a cell cycle checkpoint may be responsible for the genomic instability of cancer cells. Cell 71: 543–546

    Article  PubMed  CAS  Google Scholar 

  • Hartwell LH, Weinert TA (1989) Checkpoints: controls that ensure the order of cell cycle events. Science 246: 629–634

    Article  PubMed  CAS  Google Scholar 

  • Hibi M, Lin A, Smeal T, Minden A, Karin M (1993) Identification of an oncoprotein- and UV-respsonsive protein kinase that binds and potentiates the c-Jun activation domain. Genes Dev 7: 2135–2148

    Article  PubMed  CAS  Google Scholar 

  • Hoekstra MF (1995) The HRR25 protein kinase. In: Hardie G, Hanks S (eds) The protein kinase facts book. Academic, London

    Google Scholar 

  • Hoekstra MF, Liskay RM, Ou AC, DeMaggio AJ, Burbee DG, Heffron F (1991) HRR25, a putative protein kinase from budding yeast: association with the repair of damaged DNA. Science 253: 1031–1034

    Article  PubMed  CAS  Google Scholar 

  • Hoekstra MF, Dhillon N, Carmel G, DeMaggio AJ, Lindberg RAL, Hunter T, Kuret J (1994) Budding and fission yeast casein kinase I isoforms have dual-specificity protein kinase activity. Mol Biol Cell 5: 877–886

    PubMed  CAS  Google Scholar 

  • Malone RE, Esposito RE (1980) The RAD52 gene product is required for homothallic interconversion of mating types and spontaneous mitotic recombination in yeast. Proc Natl Acad Sci USA 77: 503–507

    Article  PubMed  CAS  Google Scholar 

  • Milne DM, Palmer RH, Campbell DG, Meek DW (1992) Phosphorylation of the p53 tumour-suppressor at three N- terminal sites by a novel casein kinase I-like enzyme. Oncogene 7: 1361–1369

    PubMed  CAS  Google Scholar 

  • Roach PJ (1991) Control of glycogen synthase by hierarchal protein phosphorylation. FASEB J 4: 2961–2968

    Google Scholar 

  • Rowles J, Slaughter C, Moomaw C, Hsu J, Cobb MH (1991) Purification of casein kinase I and isolation of cDNAs encoding multiple casein kinase I-like enzymes. Proc Natl Acad Sci USA 88: 9548–9552

    Article  PubMed  CAS  Google Scholar 

  • Russell P, Nurse P (1987) Negative regulation of mitosis by weel+, a gene encoding a protein kinase homolog. Cell 49: 559–567

    Article  PubMed  CAS  Google Scholar 

  • Sheldrick KS, Carr AM (1993) Feedback controls and G2 checkpoints: fission yeast as a model system. Bioessays 15: 775–782

    Article  PubMed  CAS  Google Scholar 

  • Tuazon PT, Traugh J A (1991) Casein kinase I and II — multi-potential serine protein kinases: structure, function, and regulation. Adv Sec Mess Phosphoprot Res 21: 123–164

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

Christenson, E., DeMaggio, A.J., Hoekstra, M.F. (1997). The Role of Workhorse Protein Kinases in Coordinating DNA Metabolism and Cell Growth. In: Müller-Hermelink, H.K., Neumann, HG., Dekant, W. (eds) Risk and Progression Factors in Carcinogenesis. Recent Results in Cancer Research, vol 143. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60393-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60393-8_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64385-9

  • Online ISBN: 978-3-642-60393-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics