Advertisement

Fundamentals of Intelligent Control

  • Igor Grabec
  • Wolfgang Sachse
Part of the Springer Series in Synergetics book series (SSSYN, volume 68)

Abstract

We describe in this chapter how an empirical modeling of natural phenomena based on learning from examples can be utilized as the basis of an empirical approach for solving control problems. In fact, the importance and advantage of empirical modeling of natural phenomena can best be demonstrated by showing how the difficult problems taking place in the general approach to adaptive and non-linear control can be treated. Our aim is not to become immersed in a detailed description of various specific problems and devices from the broad field of control but rather to show how progress in this field can be facilitated by application of empirical modeling.

Keywords

Utility Function Optimal Control Problem Reinforcement Learning Reference Signal Empirical Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. S. Albus: “A New Approach to Manipulator Control: The Cerebellar Model Articulation Controller (CMAC)”, Trans. ASME, J. of Dyn. Sys., Meas, and Control, 97, 220–227 (1975)zbMATHCrossRefGoogle Scholar
  2. 2.
    K. J. Åström: Introduction to Stochastic Control Theory ( Academic Press, New York 1970 )zbMATHGoogle Scholar
  3. 3.
    K. J. Åström, T. J. McAvoy: “Intelligent Control: An Overview and Evaluation”, in Handbook of Intelligent Control, Neural, Fuzzy and Adaptive Approaches, ed. by D. A. White, D. A. Sofge (Van Nostrand Reinhold, New YorkGoogle Scholar
  4. 4.
    A. Bagchi: Optimal Control of Stochastic Systems ( Prentice-Hall, New York 1993 )zbMATHGoogle Scholar
  5. 5.
    W. L. Baker, J. A. Farrell: “An Introduction to Connectionist Learning Control Systems”, in Handbook of Intelligent Control, Neural, Fuzzy, and Adaptive Approaches, ed. by D. A. White, D. A. Sofge ( Van Nostrand Reinhold, New York 1992 ), pp. 35–63.Google Scholar
  6. 6.
    R. Bellman, R. E. Kalaba: Dynamic Programming and Modern Control Theory ( Academic Press, New York 1965 )Google Scholar
  7. 7.
    D. P. Bertsekas: Dynamic Programming: Deterministic and Stochastic Models ( Prentice-Hall, Englewood Cliffs, NJ 1987 )zbMATHGoogle Scholar
  8. 8.
    W. L. Brogan: Modern Control Theory ( Prentice-Hall, Englewood Cliffs, NJ 1985 )zbMATHGoogle Scholar
  9. 9.
    I. Grabec: “Chaos Generated by the Cutting Process”, Phys. Lett., 117, 384–386 (1986)MathSciNetCrossRefGoogle Scholar
  10. 10.
    J. Gradišek, E. Govekar, I. Grabec: “Chaotic Cutting Process and Determining Optimal Cutting Parameter Values Using Neural Networks”, Int. J. Machine Tools & Manuf., (1996) in printGoogle Scholar
  11. 11.
    H. Haken: Synergetics: An Introduction, Springer Series in Synergetics, Vol. 1 ( Springer, Berlin 1983 )Google Scholar
  12. 12.
    R. Howard: Dynamic Programming and Markov Processes ( MIT Press, Cambridge, MA 1960 )zbMATHGoogle Scholar
  13. 13.
    D. E. Kirk: Optimal Control Theory — An Introduction ( Prentice-Hall, Englewood Cliffs, NJ 1970 )Google Scholar
  14. 14.
    M. Kokol: “Modeling of Natural Phenomena by a Self-Organizing Regression Neural Network”, MSc Disertation ( Faculty of Natural Sciences and Technology, University of Ljubljana 1993 )Google Scholar
  15. 15.
    Neural Networks for Control, ed. by W. T. Miller, III, R. S. Sutton, P. J. Werbos (The MIT Press, Cambridge, MA 1990)Google Scholar
  16. 16.
    K. S. Narendra: “Adaptive control of Dynamical Systems Using Neural Networks”, in Handbook of Intelligent Control, Neural, Fuzzy, and Adaptive Approaches, ed. by D. A. White, D. A. Sofge ( Van Nostrand Reinhold, New York 1992 ), pp. 141–184Google Scholar
  17. 17.
    K. S. Narendra, A. M. Annaswamy: Stable Adaptive Syestms ( Prentice-Hall, Englewood Cliffs, NJ 1989 )Google Scholar
  18. 18.
    H. Nguyen, B. Widrow: “Neural Networks for Self-Learning Control Systems”, IEEE Control Systems Magazine, 4, 18–23 (1990)CrossRefGoogle Scholar
  19. 19.
    J. G. Reid: Linear System Fundamentals, Continuous and Discrete, Classic and Modern ( McGraw-Hill, New York 1983 )Google Scholar
  20. 20.
    Jean-Jacques E. Slotine, Weiping Li: Applied Nonlinear Control ( Prentice-Hall, Englewood Cliffs, NJ 1991 )zbMATHGoogle Scholar
  21. 21.
    S. B. Thurn:“The Role of Exploration in Learning Control” in Handbook of Intelligent Control, Neural, Fuzzy and Adaptive Approaches, ed. by D. A. White, D. A. Sofge ( Van Nostrand Reinhold, New York 1992 ) pp. 527–559Google Scholar
  22. 22.
    P. J. Werbos: “Neural Control and Elastic Fuzzy Logic: Capabilities, Concepts, and Applications”, Industrial Electronics, 40, 170–180 (1993)CrossRefGoogle Scholar
  23. 23.
    Handbook of Intelligent Control, Neural, Fuzzy, and Adaptive Approaches, ed. by D. A. White, D. A. Sofge (Van Nostrand Reinhold, New York 1992)Google Scholar
  24. 24.
    B. Widrow, E. Walach: Adaptive Inverse Control ( Prentice-Hall PTR, Upper Saddle River, NJ 1996 )Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Igor Grabec
    • 1
  • Wolfgang Sachse
    • 2
  1. 1.Faculty of Mechanical EngineeringUniversity of LjubljanaLjubljanaSlovenia
  2. 2.Theoretical and Applied MechanicsCornell UniversityIthacaUSA

Personalised recommendations