Advertisement

Modeling and Forecasting of Chaotic Processes

  • Igor Grabec
  • Wolfgang Sachse
Part of the Springer Series in Synergetics book series (SSSYN, volume 68)

Abstract

In discussing the modeling and forecasting of chaotic processes we presume that the reader will be familiar with the fundamentals of deterministic chaos. For the interested reader we provide a brief description in Appendix B.

Keywords

Prediction Error Chaotic Attractor Chaotic Signal Deterministic Chaos Chaotic Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. D. I. Abarbanel, Phys. Rev. A, 41, 1782–1807 (1990)MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    J. P. Crutchfield, B. S. McNamara: “Equations of Motion from Data Series”, Complex Systems, 1, 417–452 (1987)MathSciNetzbMATHGoogle Scholar
  3. 3.
    J. Deppisch: “Vorhersagen chaotischer Zeitreihen mit neuronalen Netzen”, (Phys. Inst., Theoret. Phys., Univ. Würzburg 1990 ), DiplomarbeitGoogle Scholar
  4. 4.
    J. Deppisch, H. U. Bauer, T. Geisel: “Hierachical Training of Neural Networks and Prediction of Chaotic Time Series”, Phisics Letters A, 158, 57–62 (1991)ADSCrossRefGoogle Scholar
  5. 5.
    J. D. Farmer: Report No. LA-UR-87-1502 and No. LA-UR-88-901 (Los Alamos Nat. Lab., Los Alamos, NM)Google Scholar
  6. 6.
    I. Grabec: “Chaos Generated by the Cutting Process”, Physics Letters, 117, 384–386 (1986)MathSciNetCrossRefGoogle Scholar
  7. 7.
    I. Grabec: “Chaotic Vibrations and AE Caused by the Cutting Process”, in Progress in AE III, Proc. 8th Int. AE Symp., Tokyo 1986, (Jap. Soc. NDI, Tokyo ), pp. 87–94Google Scholar
  8. 8.
    I. Grabec: “Chaotic Dynamics of the Cutting Process”, Int. J. Machine Tools & Manufacturing, 28, 19–32 (1988)CrossRefGoogle Scholar
  9. 9.
    I. Grabec: “Modeling of Natural Phenomena by a Self-Organizing Neural Network”, in Neurocomputing, Proc. ECPD, Dubrovnik, 1990, Vol. 1, pp. 142–150Google Scholar
  10. 10.
    I. Grabec: “Prediction of a Chaotic Time Series by a Self-Organizing Neural Network”, Dynamics Days, Düsseldorf, 1990, posterGoogle Scholar
  11. 11.
    I. Grabec: “Prediction of Dynamical Phenomena by a Neural Network”, Proc. Conf. Melecon’91, Ljubljana, Slovenia, ed. by B. Zajc, F. Solina, IEEE Cat. No. 91CH2964-5, 1991, pp. 18–23Google Scholar
  12. 12.
    I. Grabec: “Modeling of Chaos by a Self-Organizing Neural Network, Artificial Neural Networks”, Proc. ICANN, Espoo, Finland, ed. by T. Kohonen, K. Mäkisara, O. Simula, J. Kangas (Elsevier Science Publishers B. V., North-Holland 1991), Vol. 1, pp. 151–156Google Scholar
  13. 13.
    I. Grabec: “Prediction of Chaotic Dynamical Phenomena by a Neural Network”, in Dynamic, Genetic and Chaotic Programing, The Sixth Generation, ed. by B. Soucek and IRIS Group ( John Wiley & Sons, New York 1992 ), pp. 470–500Google Scholar
  14. 14.
    I. Grabec: “Prediction of a Chaotic Economic Time Series by a Self-Organizing Neural Network”, Neural Network World, 2, 607–614 (1992)Google Scholar
  15. 15.
    I. Grabec: “Prediction of Chaos in Non-Autonomous Systems by a Neural Network”, Proc. ICANN, Brighton, UK, 1992, ed. by I. Aleksander, J. Taylor ( Elsevier Sci. Pub., Amsterdam 1992 ), pp. 379–382Google Scholar
  16. 16.
    I. Grabec, W. Sachse: “Automatic Modeling of Physical Phenomena: Application to Ultrasonic Data”, J. Appl. Phys., 69 (9), 6233–6244 (1991)Google Scholar
  17. 17.
    P.Grassberger, I. Procaccia: “Characterization of Strange Attractors”, Phys. Rev. Lett., 50, 346–349 (1983)MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    H. Haken: Synergetics, An Introduction, Springer Series in Synergetics, Vol. 1 ( Springer, Berlin 1983 )Google Scholar
  19. 19.
    R. Hecht-Nielsen: Neurocomputing ( Addison-Wesley, Reading, MA 1990 )Google Scholar
  20. 20.
    G. A. Korn, T. M. Korn: Mathematical Handbook for Scientists and Engineers (McGraw-Hill, New York 1961, 1968 and latter editions)zbMATHGoogle Scholar
  21. 21.
    A. Lapedes, R. Farber: Report No. LA-UR-87-2662 (Los Alamos Natl. Lab., Los Alamos, NM 1987 )Google Scholar
  22. 22.
    A. J. Lichtenberg, M. A. Lieberman: Regular and Stochastic Motion ( Springer, New York 1983 )zbMATHGoogle Scholar
  23. 23.
    W. Liebert, H. G. Schuster: “Proper Choice of the Time Delay for the Analysis of Chaotic Time Series”, Phys. Lett., 142, 107–111 (1989)MathSciNetCrossRefGoogle Scholar
  24. 24.
    H. Lütkepohl: Introduction to Multiple Time Series Analysis ( Springer, Berlin 1991 )zbMATHGoogle Scholar
  25. 25.
    F. C. Moon: Chaotic Vibrations, An Introduction for Applied Scientists and Engineers (J. Wiley & Sons, New York 1987 )Google Scholar
  26. 26.
    E. Ott: Chaos in Dynamical Systems ( Cambridge University Press, Cambridge 1994 )Google Scholar
  27. 27.
    H. G. Schuster: Deterministic Chaos ( Physik-Verlag, Weinheim 1984 )zbMATHGoogle Scholar
  28. 28.
    K. Stokbro, D. K. Umberger, J. A. Hertz, Complex Systems, 4, 603–622 (1990)zbMATHGoogle Scholar
  29. 29.
    P. Strobach: Linear Prediction Theory, A Mathematical Basis for Adaptive Systems ( Springer, Berlin 1990 )zbMATHGoogle Scholar
  30. 30.
    S. Strogatz: Nonlinear Dynamics and Chaos ( Addison-Wesley, Reading MA 1994 )Google Scholar
  31. 31.
    F. Takens: “Detecting Strange Attractors in Fluid Turbulence”, Lecture Notes in Mathematics, 898, 366–381 (1981), ed. by D. A. Rand, L. S. Young ( Springer, Berlin 1981 )Google Scholar
  32. 32.
    M. West, J. Harrison: Bayesian Forecasting and Dynamic Models, ( Springer, Berlin 1989 )zbMATHGoogle Scholar
  33. 33.
    K. Zgonc, I. Grabec: “A Multidimensional Optimal Deconvolution Applied to Hetero-Associative Recall of AE Signals”, Proc. ECPD Neurocomputing, Dubrovnik, 1990, Vol. 1, pp. 206–212Google Scholar
  34. 34.
    Time Series Prediction: Forecasting the Future and Understanding the Past, Proc. NATO Advanced Res. Workshop on Comparative Time Series Anal., Santa Fe, NM 1992, ed. by A. S. Weigend, N. A. Gershenfeld (Addison-Wesley, Reading, MA 1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Igor Grabec
    • 1
  • Wolfgang Sachse
    • 2
  1. 1.Faculty of Mechanical EngineeringUniversity of LjubljanaLjubljanaSlovenia
  2. 2.Theoretical and Applied MechanicsCornell UniversityIthacaUSA

Personalised recommendations