Skip to main content

Part of the book series: Springer Series in Synergetics ((SSSYN,volume 66))

  • 131 Accesses

Abstract

A new approach to architecture based on the use of a laser as a nonlinear discriminator for all-optical, auto- and hetero-associative memories is presented. The laser operates in a regime of spatial multistability, i.e., of the coexistence of different stable stationary states. Numerical calculations in the simplest situations indicate that the laser is able to decide which of its stationary states is most similar to a field pattern that is injected into the laser itself. The laser is combined with a linear system composed of lenses, holograms, and a pinhole mask. The memory is constituted of a certain number of images that are stored in one of the holograms and which are in one-to-one correspondence with the stationary states of the laser. The task of the linear part is (a) to convert an arbitrary image offered to the system into an appropriate field pattern, which is injected into the laser; and (b) to convert the stationary beam, which emerges from the laser, into the corresponding image in memory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Goodman, J.W., Leonberger, F.J., Kung, S.Y., Athale, R.A.: Proc. IEEE 721984, 850

    Article  ADS  Google Scholar 

  2. Gabor, D.: IBM J. Res. Dev. 13, 1969, 156

    Article  Google Scholar 

  3. Van der Lugt, A.B.: IEEE Trans. Inf. Theory, IJ-101964, 139

    Google Scholar 

  4. Hopfield, J.J.: Proc. Nat. Acad. Sc. USA, 791982, 2554

    Article  MathSciNet  ADS  Google Scholar 

  5. Kohonen, T.: Self-Organization and Associative Memory. Springer-Verlag, 1984

    MATH  Google Scholar 

  6. Carpenter, G.A., Grossberg, S.: Appl. Opt. 261987, 4919

    Article  ADS  Google Scholar 

  7. Cohen, M.S.: Appl. Opt. 251986, 2288

    Article  ADS  Google Scholar 

  8. Psaltis, D., Farhat, N.H.: Opt. Lett. 101985, 98

    Article  ADS  Google Scholar 

  9. Abu-Mostafa, Y.S., Psaltis, D.: Scientific American, 88March 1987

    Google Scholar 

  10. Soffer, B.H., Dunning, C.J., Owechko, Y., Marom, E.: Opt. Lett. 111986, 118

    Article  ADS  Google Scholar 

  11. Yariv, A., Sze-Keung Kwong: Opt. Lett. 111986, 186

    Article  ADS  Google Scholar 

  12. Anderson, D.Z., Lininger, D.M., Feinberg, J.: Opt. Lett. 121987, 123

    Article  ADS  Google Scholar 

  13. Anderson, D.Z.: In AIP Conf. Proc. n. 1511986, 12

    Article  ADS  Google Scholar 

  14. Lalanne, P., Chavel, P., Taboury, J.: Appl. Opt. 281989, 377

    Article  ADS  Google Scholar 

  15. Haken, H.: In Computational Systems – Natural and Artificial. Ed. Haken, H., Springer-Verlag, Berlin, 1987, 2

    Google Scholar 

  16. Fuchs A., Haken H.: In Neural and Synergetic Computers. Ed. Haken H., Springer-Verlag, Berlin, 1988, 16

    Google Scholar 

  17. Vorontsov, M.A.: Proc. SPIE 4021991, 116

    Article  Google Scholar 

  18. Tamm C., Weiss, C.O.: J. Opt. Soc. Am. B 71990, 1034

    Article  ADS  Google Scholar 

  19. Brambilla, M., Battipede, F., Lugiato, L.A., Penna, V., Prati, F., Tamm, C., Weiss, C.O.: Phys. Rev. A 43

    Google Scholar 

  20. Brambilla, M., Lugiato, L.A., Penna, V., Prati, F., Tamm, C., Weiss, C.O.: Phys. Rev. A 431991, 5114

    Article  ADS  Google Scholar 

  21. Brown, B.R., Lohmann, A.W.: IBM J. Res. & Dev. 131969, 160

    Article  Google Scholar 

  22. Lee, H.W.: In Progress in Optics XVI. Ed. Wolf, E., North-Holland, Amster-dam, 1978, 119

    Chapter  Google Scholar 

  23. Kogelnik, H.: In Lasers: A Series of Advances. Ed. Levine, A.K., 1, Marcel Dekker, New York, 1966, 295

    Google Scholar 

  24. Lugiato, L.A., Prati, F., Narducci, L.M., Oppo, J.L.: Opt. Comm. 691989, 387

    Article  ADS  Google Scholar 

  25. Brambilla, M., Lugiato, L.A., Pinna, M.V., Prati, F., Pagani, P., Vanotti, P., Li, M. Y., Weiss, C.O.: Submitted for publication

    Google Scholar 

  26. Anderson, D.Z.: Opt. Lett. 111986, 56

    Article  ADS  Google Scholar 

  27. Farhat, N.H., Psaltis, D.: In Optical Signal Processing. Ed. Horner, J.L., Academic Press, San Diego, 1987, Chapts. 2, 3

    Google Scholar 

  28. Rajbenbach, H., Bann, S., Huignard, J.P.: Optical Computing Topical Meet-ing, Salt Lake City, March 1991

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brambilla, M., Lugiato, L.A., Pinna, M.V., Pratti, F., Pagani, P., Vanotti, P. (1998). Laser-Based Optical Associative Memories. In: Vorontsov, M.A., Miller, W.B. (eds) Self-Organization in Optical Systems and Applications in Information Technology. Springer Series in Synergetics, vol 66. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60315-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60315-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64125-4

  • Online ISBN: 978-3-642-60315-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics