Skip to main content

Genetically Modified Fibroblasts Induce Angiogenesis in the Rat Epigastric Island Flap

  • Conference paper
  • 125 Accesses

Abstract

One of the domains in the field of plastic and reconstructive surgery comprises the transposition or transplantation of tissue to cover defects due to different aetiopathological reasons. In all cases, however, sufficient blood supply to the tissue is mandatory to ensure complete survival of the transported tissue and a successful operation. For hundreds of years, surgeons have tried to support the formation of new blood vessels (i. e., angiogenesis) within the transported tissue (i.e., flap) by different means. Usually the flap was “conditioned” by raising the flap in its wound bed and suturing it back into its place, thus creating a slightly ischemic situation within the flap tissue by surgical division of the nutrient blood vessels except for the supporting vascular pedicle. After 2–3 weeks, the flap had developed enough new nutrient blood vessels on its own to survive after its transfer. This angiogenetic process was named “delay phenomenon.”

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Strauch B, Murray DE (1967) Transfer of composite grafts with immediate suture anastomosis of its vascular pedicle measuring less than one mm in external diameter using microsurgical techniques. Plast Reconstr Surg 40:325–329

    Article  PubMed  CAS  Google Scholar 

  2. Acland RD (1975) In: Grabb WC, Myers MB (eds) Skin flaps. Little, Brown, pp 100–106

    Google Scholar 

  3. Serafín D, Shearin JC, Georgiade NG (1977) The vascularization of free flaps. Plast Reconstr Surg 60:233–241

    Article  PubMed  Google Scholar 

  4. Myers MB (1975) Attempts to augment survival in skin flaps: mechanism of the delay phenomenon. In: Grabb WC, Myers MB (eds) Skin flaps. Little, Brown

    Google Scholar 

  5. Takishita S, Tsurumi Y, Couffinal T, Asahara T, Bauters C, Symes J, Ferrara N, Isner JM (1996) Gene transfer of naked DNA encoding for three isoforms of vascular endothelial growth factor stimulates collateral development in vivo. Labor Invest 75:487–501

    Google Scholar 

  6. Isner JM, Walsh K, Rosenfield K, Schainfeld R, Asahara T, Hogan K, Pieszek A (1996) Arterial gene therapy for restenosis. Hum Gene Ther 7:989–1011

    Article  PubMed  CAS  Google Scholar 

  7. Isner JM, Pieczek A, Schainfeld R, Blair R, Haley L, Asahara T, Rosenfield K, Razvi S, Walsh K, Symes JF (1996) Clinical evidence of angiogenesis after arterial gene transfer of phVEGF165 in patient with ischaemic limb. Lancet 348:370–374

    Article  PubMed  CAS  Google Scholar 

  8. Muehlhauser J, Merrill MJ, Pili R, Mäda H, Bacie M, Bewig B, Passaniti A, Edwards NA, Crystal RG, Capogrossi MC (1995) VEGF165 expressed by a replication-deficient recombinant adenovirus vector induces angiogenesis in vivo. Circulation Res 77:1077–1086

    Google Scholar 

  9. Muehlhauser J, Pili R, Merrill MJ, Mäda H, Passaniti A, Crystal RG, Capogrossi MC (1995) In vivo angiogenesis induced by recombinant adenovirus vectors coding either for secreted or nonsecreted forms of acidic fibroblast growth factor. Hum Gene Ther 6:1457–1465

    Google Scholar 

  10. Messina LM, Podrazik RM, Whitehill TA, Ekhterä D, Brothers TE, Wilson JM, Burkel WE, Stanley JC (1992) Adhesion and incorporation of lacZ-transduced endothelial cells into the intact capillary wall in the rat. Proc Natl Acad Sci 89:12018–12022

    Article  PubMed  CAS  Google Scholar 

  11. Magovern CJ, Mack DA, Zhang J, Rosengart TK, Isom OW, Crystal RG (1997) Regional angiogenesis induced in nonischemic tissue by an adenoviral vector expressing vascular endothelial growth factor. Hum Gene Ther 8:215–227

    Article  PubMed  CAS  Google Scholar 

  12. Takeshita S, Weir L, Chen D, Zheng LP, Riessen R, Bauters C, Symes JF, Ferrara N, Isner JM (1996) Therapeutic angiogenesis following arterial gene transfer of vascular endothelial growth factor in a rabbit model of hindlimb ischemia. Biochem Biophys Res Comm 227:628–635

    Article  PubMed  CAS  Google Scholar 

  13. Takeshita S, Tsurumi Y, Couffmahl T, Asahara T, Bauters C, Symes J, Ferrara N, Isner JM (1996) Gene transfer of naked DNA encoding for three isoforms of vascular endothelial growth factor stimulates collateral development in vivo. Lab Invest 75:487–501

    PubMed  CAS  Google Scholar 

  14. Zhang J, Rüssel SJ (1996) Vectors for cancer gene therapy. Cancer Metastasis Rev 15:385–401

    Article  PubMed  CAS  Google Scholar 

  15. Isner JM (1996) The role of angiogenetic cytokines in cardiovascular disease. Clin In-nunol Immunopathol 80:S82–S91

    Article  CAS  Google Scholar 

  16. Magovern CJ, Mack CA, Zhang J, Hahn RT, Ko W, Isom OW, Crystal RG, Rosengart TK (1996) Ann Thorac Surg 62:425–433

    Google Scholar 

  17. Ibukiyama C (1996) Angiogenesis: angiogenic therapy using fibroblast growth factors and vascular endothelial growth factors for ischemic vascular lesions. Jpn Heart J 37:285–300

    Article  PubMed  CAS  Google Scholar 

  18. Giordano FJ, Ping P, McKirnan MD, Nozaki S, DeMaria AN, Dillmann WH, Mathieu-Costello O, Hammond HK (1996) Intracoronary gene transfer of fibroblast growth fac-tor-5 increases blood flow and contractile function in an ischemic region of the heart. Nat Med 2:534–539

    Article  PubMed  CAS  Google Scholar 

  19. Wei Y, Li J, Wagner TE: Long-term expression of human growth hormone (hGH) in mice containing allogenic yolk sac cell derived neovascular implants expressing hGH. Stem Cells 14:232–238

    Google Scholar 

  20. Nakashima E, Mukaida N, Kubota Y, Kuno K, Yasumoto K, Ichimura F, Nakanishi I, Miyasaka M, Matsushima K (1995) Human MCAF gene transfer enhances the metastatic capacity of a mouse cachectic adenocarcinoma cell line in vivo. Pharm Res 12:1598–1604

    Google Scholar 

  21. Isner JM; Walsh K, Symes J, Pieczek A, Takeshita S, Lowry J, Rossow S, Rosenfield K, Weir L, Brogi E (1995) Arterial gene therapy for therapeutic angiogenesis in patients with peripheral artery disease. Circulation 91:2687–2692

    PubMed  CAS  Google Scholar 

  22. Mesri EA, Federoff HJ, Brownlee M (1995) Expression of vascular endothelial growth factor from a defective herpes simplex virus type 1 amplicon vector induces angiogenesis in mice. Circ Res 76:161–167

    PubMed  CAS  Google Scholar 

  23. Nabel EG, Yang ZY, Plautz G, Forough R, Zhan X, Haudenschild CC, Maciag T, Nabel GJ (1993) Recombinant fibroblast growth factor-1 promotes intimai hyperplasia and angiogenesis in arteries in vivo. Nature 362:844–846

    Article  PubMed  CAS  Google Scholar 

  24. Ohashi T, Boggs S, Robbins P, Bahnson A, Patrene K, Wie F, Wie J, Li J, Lucht L, Fei Y, Clark S, Kimak M, He F, Mowery-Rushton P, Barranger JA (1992) Efficient transfer and sustained high expression of the human glucocerebrosidase gene in mice and their functional macrophages following transplantation of bone marrow transduced by a retroviral vector. Proc Natl Acad Sci USA 89:11332–11336

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Machens, HG., Morgan, J.R., Berthiaume, F., Stefanovich, P., Berger, A.C. (1998). Genetically Modified Fibroblasts Induce Angiogenesis in the Rat Epigastric Island Flap. In: Stark, G.B., Horch, R., TÁczos, E. (eds) Biological Matrices and Tissue Reconstruction. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60309-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60309-9_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64347-7

  • Online ISBN: 978-3-642-60309-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics