Skip to main content

Chondrocyte Differentiation in Fibrin-Coating on Polytetrafluorethylene Membranes

  • Conference paper
Biological Matrices and Tissue Reconstruction

Abstract

Full-thickness defects of articular cartilage have a poor capacity for repair, because cartilage is an avascular tissue and cartilage injuries thus have a poor reparative capacity, since the tissue response with formation of a fibrin clot is absent. Slight mitotic activity around the edges of a cartilage lesion is not strong enough to repair the defect. With previous operative techniques, chondral lesions could only be repaired by the production of a mainly fibrocartilage tissue with reduced biomechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sittinger M, Bujia J, Minuth WW, Hammer C, Burmester GR (1994) Engineering of cartilage tissue using bioresorbable polymer carriers in perfusion culture. Biomaterials 15:451–456

    Article  PubMed  CAS  Google Scholar 

  2. Vacanti CA, WooSeob K, Schloo B, Upton J, Vacanti JP (1994) Joint resurfacing with cartilage grown in situ from cell-polymer structures. Am J Sports Med 22:485–488

    Article  PubMed  CAS  Google Scholar 

  3. Aston JE, Bentley G (1986) Repair of articular surfaces by allografts of articular and growth-plate cartilage. J Bone Joint Surg 68B:29–34

    Google Scholar 

  4. Klompmaker J, Jansen HWB, Veth RPH, Nielsen HKL, de Groot JH, Pennings AJ (1992) Porous polymer implants for repair of full thickness defects of articular cartilage: an experimental study in rabbit and dog. Biomaterials 13:625–634

    Article  PubMed  CAS  Google Scholar 

  5. Freed LE, Grande DA, Lingbin Z, Emmanuel J, Marquis JC, Langer R (1994) Joint resurfacing using allograft chondrocytes and synthetic biodegradable polymer scaffolds. J Biomed Mat Res 28:891–899

    Article  CAS  Google Scholar 

  6. Hashimoto J, Kurosaka M, Yoshiya S, Hirohata K (1992) Meniscal repair using fibrin sealant and endothelial cell growth factor: aAn experimental study in dogs. Am J Sports Med 20:537–541

    Article  PubMed  CAS  Google Scholar 

  7. Redl H, Schlag G(1986) Properties of different tissue sealants with special emphasis of fibrogen-based preparations. In: Schlag G, Redl H (eds) Fibrin sealant in operative medicine, traumatology and orthopaedics. Springer, Berlin, (vol 7) pp 27–38

    Chapter  Google Scholar 

  8. BrittbergM, Sjögren-Janson E, Lindahl A, Peterson L(1996) The influence of fibrin sealant (Tisseel) on osteochondral defect repair in the rabbit knee. In: Brittberg M (ed) Cartilage repair. Vasastadens Bokbinderi, Goteborg, pp IV.1–22

    Google Scholar 

  9. Homminga GN, Buma P, Koot HWJ, van der Kraan PM, van den Berg WB (1993) Chondrocyte behaviour in fibrin glue in vitro. Acta Orthop Scand 64:441–445

    Article  PubMed  CAS  Google Scholar 

  10. Angele P, Nerlich A, Kujat R, Möller H, Nerlich M (1997) Chondrocytegrowth on Poly-tetrafluorethylen-Membranes in Fibrin-Coating: a new approach for creating hyaline cartilage. Langenbecks Arch Chir I 499–503

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Angele, P. et al. (1998). Chondrocyte Differentiation in Fibrin-Coating on Polytetrafluorethylene Membranes. In: Stark, G.B., Horch, R., TÁczos, E. (eds) Biological Matrices and Tissue Reconstruction. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60309-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60309-9_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64347-7

  • Online ISBN: 978-3-642-60309-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics