Skip to main content

Autologouos Transplantation of Urothelium into Demucosalized Gastrointestinal Segments

  • Conference paper
Book cover Biological Matrices and Tissue Reconstruction

Abstract

The use of demucosalized gastrointestinal segments for bladder augmentation is limited by shrinkage and fibrosis occurring during the reepithelialization process. Shrinkage and fibrosis was shown to be reduced by early and complete urothelial coverage of the gastrointestinal segment. Transplantation of in vitro expanded autologous urothelial cells was suggested to achieve rapid epithelial coverage of gastrointestinal segments. We have shown that complete reepithelialization as well as differentiation of in vitro expanded urothelial cells can be achieved in vivo as early as two weeks after transplantation onto demucosalized gastrointestinal segments. For transplantation we used cells grown on collagen type I membranes, hyaluronic acid membranes, or urothelial cells incorporated into fibrin gels. Most successful with respect to complete reepithelialization and differentiation was the transfer of urothelial cells grown on collagen type I membranes. However, shrinkage and fibrosis of the gastrointestinal segments were not prevented by the rather rapid reepithelialization achieved with urothelial cells grown on collagen membranes. We are currently investigating whether transplantation of an already differentiated multilayered urothelium or distension of gastrointestinal segments prevents shrinkage and fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nurse DE, Mundy AR (1989) Metabolic complications of cysiopUsiy. Br J Urol 63:165–170

    Article  PubMed  CAS  Google Scholar 

  2. Gleeson MJ, Cuniune G, Graiger R (1991) Spontaneous perforation of an augmented bladder. Br J Urol 68:655

    Article  PubMed  CAS  Google Scholar 

  3. Mundy AR, Nurse DE (1992) Calcium balance, growth and skeletal mineralisation in patients with cystopiasties. Br J Urol 69:257–259

    Article  PubMed  CAS  Google Scholar 

  4. Lockhart JL, Davies R, Persky L, Figueroa TF, Ramirez G (1994) Acid-base changes following urinary tract reconstruction for continent diversion and orthotopic bladder replacement. J Urol 152:338–342

    PubMed  CAS  Google Scholar 

  5. Filmer RB, Spencer JR (1990) Malignancies in bladder augmentations and intestinal conduits. J Urol 143:671–678

    PubMed  CAS  Google Scholar 

  6. Palmer LS, Franco I, Kogan SJ, Reda E, Gill B, Levitt SB (1993) Urolithiasis in children following augmentation cystoplasty. J Urol 150:726–729

    PubMed  CAS  Google Scholar 

  7. Davidsson T, Carlén B, Bak-Jensen E, Wilkén R, Månsson W (1996) Morphologic changes in intestinal mucosa with urinary contact-effects of urine or disuse? J Urol 156:226–232

    Article  PubMed  CAS  Google Scholar 

  8. Martin LSJ (1959) Uroepithelial lined ileal segments is a bladder replacement: experimental observations and brief review of the literature. J Urol 82:633–649

    PubMed  CAS  Google Scholar 

  9. Blandy JP (1961) Ileal pouch with transitional epithelium and anal sphincter as a continent urinary reservoir. J Urol 86:749–767

    PubMed  CAS  Google Scholar 

  10. Blandy JP (1964) The feasibility of preparing an ideal substitute for the urinary bladder. Ann Royal Coll Surg 35:287–311

    CAS  Google Scholar 

  11. Motley RC, Montgomery BT, Zollmann PE, Hollar KE, Kramer SA (1990) Augmentation cystoplasty utilizing de-epithelialized sigmoid colon: a preliminary study. J Urol 143:1257–1260

    PubMed  CAS  Google Scholar 

  12. Dewan PA, Stefanek W, Lorenz C, Owen AJ, Byard RW (1995) Autoaugroentation gastrocystoplasty and demucosalized gastrocystoplasty in a sheep model. Urology 45:291–295

    Article  PubMed  CAS  Google Scholar 

  13. Frey P, Lutz N, Leuba A-L (1996) Augmentation cy epithclialized gastric patches in the mini-pig model. J Urol 156:608–613

    Article  PubMed  CAS  Google Scholar 

  14. Lutz N, Frey P (1995) Enterocystoplasty using mod epithelialized sigmoid patches in the mini-pig model. J Urol 154:893–898

    Article  PubMed  CAS  Google Scholar 

  15. Mexguenan PA, Chavez DR, Hakim S (1994) Graftir bladder mucosa into de-epithelialized segments of colon in rabbits. J Urol 152:671–674

    Google Scholar 

  16. Lorenz C, Maier-Reif K, Back W, Hohl HP, Waag KL (1996) Cultured urothelium in sheep bladder augmentation. Pediatr Surg Int 11:456–461

    Article  Google Scholar 

  17. Garibay JT, Manivel JC, Gonz„lez R (1996) Effect of seromuscular colocystoplasty lined with urothelium and partial detrusorectomy on a new canine model of reduced bladder capacity. J Urol 154:903–906

    Article  Google Scholar 

  18. Buson H, Manivel JC, Dayanç M, Long R, González R (1994) Seromuscular colocystoplasty lined with urothelium: experimental study. Urology 44:743–748

    Article  PubMed  CAS  Google Scholar 

  19. Dewan PA, Byard RW (1993) Autoaugmentation gastrocystoplasty in a sheep model. Br J Urol 72:56–59

    Article  PubMed  CAS  Google Scholar 

  20. Petzoldt JL, Leigh IM, Duffy PG, Masters JRW (1994) Culture and characterisation of human urothelium in vivo and in vitro. Urol Res 22:67–74

    Article  PubMed  CAS  Google Scholar 

  21. Cilento BG, Freeman MR, Schneck FX, Retik AB, Atala A (1994) Phenotypic and cytogenetic characterization of human bladder urothelia expanded in vitro. J Urol 152:665–670

    PubMed  CAS  Google Scholar 

  22. Hutton KAR, Trejdosiewicz LK, Thomas DFM, Southgate J (1993) Urothelial tissue culture for bladder reconstruction: an experimental study. J Urol 150:721–725

    PubMed  CAS  Google Scholar 

  23. Reznikoff CA, Loretz LJ, Pesciotta DM, Oberley TD, Ignjatovic MM (1987) Growth kinetics and differentiation in vitro of normal human uroepithelial cells on collagen gel substrates in defined medium. J Cell Physiol 131:285–301

    Article  PubMed  CAS  Google Scholar 

  24. Schafer IA, Kovach M, Price RL, Fratianne RB (1991) Human keratinocytes cultured on collagen gels from an epidermis which synthesizes bullous pemphigoid antigens and al pha2betal intcgrins and secreles laminin, type IV collagen, and heparan sulfate proteoglycan at the basal cell surface. Exp Cell Res 195:443–457

    Article  PubMed  CAS  Google Scholar 

  25. Atala A, Freeman MR, Vacanti JP, Shepard J, Retik AB (1993) Implantation in vivo and retrieval of artificial structures consisting of rabbit and human urothelium and human bladder muscle. J Urol 150:608–612

    PubMed  CAS  Google Scholar 

  26. Fujiyama C, Masaki Z, Sugihara H (1995) Reconstruction of the urinary bladder mucosa in three-dimensional collagen gel culture: fibroblast-extracellular matrix interactions on the differentiation of transitional epithelial cells. J Urol 153:2060–2067

    Article  PubMed  CAS  Google Scholar 

  27. Hakim S, Merguerian PA, Chavez DR (1994) Use of biodegradable mesh as a transport for cultured uroepithelial graft: an improved method using collagen gel. Urology 44:139–142

    Article  PubMed  CAS  Google Scholar 

  28. Bovce ST, Hansbrough JF (1987) Biologic attachment, growth, and differentiation of cultured human epidermal keratinocytes on a graftable collagen and chondroitin-6-sul-fate substrate. Surgery 103:421–431

    Google Scholar 

  29. Hecht J, Hoefter EA, Haraida S, Nerlich A, Hartinger A, Mühlbauer W, Dimoudis N (1996) Kultivierte Keratinozyten auf Microcarriern: in-vitro-Untersuchungcn zu einem neuartigen Trägersystem. Handchir Mikrochir Plast Chir 29:101–106

    Google Scholar 

  30. Andreassi L, Casini L, Trabucchi E, Diamantini S, Rastrelli A, Donah L, Tenchini ML, Makovati M (1991) Human keratinocytes cultured on membranes composed of benzyl ester of hyaluronic acid suitable for grafting. Wounds 3:116–126

    Google Scholar 

  31. Kaiser HW, Stark GB, Kopp J, Balcertciewicz A, Spilker G, Kreysel HW (1994) Cultured autologous keratinocytes in fibrin glue suspension, exclusively and combined with STS-allograft (preliminary clinical and histological report of a new technique). Burns 20:23–29

    Article  PubMed  CAS  Google Scholar 

  32. Rheinwald JG, Green H (1975) Serial cultivation of strains of human keratinocytes: the formation of keratinizing colonies from single cells. Cell 6:331–343

    Article  PubMed  CAS  Google Scholar 

  33. Italiano G, Abatangelo Jr. G, Calabro’ A, Abatangelo G, Zanoni R, O’Regan M, Passerini-Glazel G (1997) Reconstructive surgery of the urethra: a pilot study in the rabbit on the use of hyaluronan benzyl ester (Hyaff-11) biodegradable grafts. Urol Res 25:137–142

    Article  PubMed  CAS  Google Scholar 

  34. Rouabhia M, Germain L, Bénger F, Guignard R, Auger FA (1992) Optimization of murine keratinocyte cultures for the production of crutable epidermal sheets. J Dermatol 19:325–334

    PubMed  CAS  Google Scholar 

  35. Baskin LS, Hayward SW, Sutherland RS et al. (1996) Mesenchymalepithelial interactions in the bladder. World J Urol 14:301–309

    Article  PubMed  CAS  Google Scholar 

  36. Davies JWL (1983) Synthetic materials for covering burn wounds: progress towards perfection: II. Longer term substitutes for skin. Burns 10:104–108

    Google Scholar 

  37. López Valle CA, Germain L, Rouabhia M, Xu W, Guignard R, Goulet F, Auger FA (1996) Grafting on nude mice of living skin equivalents produced using human colagens. Transplantation 62:317–323

    Article  PubMed  Google Scholar 

  38. Wu L, Siddiqui A, Morris DE, Cox DA, Roth SI, Mustoe TA (1997) Transforming growth factor β 3 (TGFβ 3) accelerates wound healing without alteration of scar prominence. Arch Surg 132:753–760

    Article  PubMed  CAS  Google Scholar 

  39. Mustoe TA, Pierce GF, Morishima C, Deuel TF (1991) Growth factor-induced acceleration of tissue repair through direct and inductive activities in a rabbit dermal ulcer model. J Clin Invest 87:694–703

    Article  PubMed  CAS  Google Scholar 

  40. Zhang K, Garner W, Cohen L, Rodriguez J, Phan S (1995) Increased types I and III collagen and transforming growth factor-beta I mRNA and protein in hypertrophic burn scar. J Invest Dermatol 104:750–754

    Article  PubMed  CAS  Google Scholar 

  41. Peltonen J, Kähärii L, Jaakkola S, Gralnick HR, Akiyama SK, Yamada SS, Yamada KM, Uitto J (1990) Evaluation of transforming growth factor β and type I procollagen gene expression in fibrotic skin diseases by in silu hybridization. J Invest Dermatol 94:365–371

    Article  PubMed  CAS  Google Scholar 

  42. Montesano R, Orci L (1988) Transforming growth factor β stimulates collagen-matrix contraction by fibroblasts: implication for wound healing. Proc Natl Acad Sci USA 85:4894–4897

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schaeffer, B.M., Back, W., Kramer, M.D., Schober, C., Waag, K.L., Lorenz, C. (1988). Autologouos Transplantation of Urothelium into Demucosalized Gastrointestinal Segments. In: Stark, G.B., Horch, R., TÁczos, E. (eds) Biological Matrices and Tissue Reconstruction. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60309-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60309-9_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64347-7

  • Online ISBN: 978-3-642-60309-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics