Skip to main content

Pokeweed Antiviral Protein and Its Applications

  • Chapter
Plant Biotechnology

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 240))

Abstract

The genus Phytolacca produces a number of proteins that have antiviral properties. These antiviral proteins are ribosome-inactivating proteins (RIPs) which remove a single adenine from a highly conserved, surface-exposed, stem-loop structure in the large rRNA of eukaryotic and prokaryotic ribosomes. They are found in two general forms: dimeric toxins (type II) containing a cell binding protein linked to the RIP by a disulfide bond, and single chain RIPs (type I), such as those found in pokeweed, composed of a single chain. A number of single-chain RIPs have been isolated from leaves, seeds and roots of a wide variety of plants (for reviews see Irvin and Uckun 1992; Irvin 1995).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aron GM and Irvin JD (1980) Inhibition of herpes simplex virus multiplication by the pokeweed antiviral protein. Antimicrob Agents Chemother 17: 1032 - 1033

    Article  PubMed  CAS  Google Scholar 

  • Balasundaram D, Dinman JD, Wickner RB, Tabor CW, Tabor H (1994) Spermidine deficiency increases +I ribosomal frameshifting efficiency and inhibits Ty/ retrotransposition in Sarrharonrces cereisioe. Proc Natl Acad Sci USA 91: 172 - 176

    Article  PubMed  CAS  Google Scholar 

  • Barbieri I, Aron GM, Irvin JD, Stirpe F (1982) Purification and partial characterization of another form of the antiviral protein from the seeds of Phrtolacca americana L (Pokeweed) Biochem J 203: 55 - 59

    PubMed  CAS  Google Scholar 

  • Barbieri L, Bolognesi A, Cenini P, Falasca AI, Minghetti A, Garofano L, Guicciardi A, Lappi D, Miller SP, Stirpe F (1989) Ribosome-inactivating proteins from plant cells in culture. Biochem. 1 257: 801 - 807

    Google Scholar 

  • Barbieri L, Gorini P, Valbonesi P, Castiglioni P, Stirpe F (1994) Unexpected activity of saporins. Nature 372: 624

    Article  PubMed  CAS  Google Scholar 

  • Barbieri L, Valbonesi P, Bonora E, Gorini P, Bolognesi A, Stirpe F (1997) Polynucleotide:adenosinc glycosidase activity of ribosome-inactivating proteins: effect on DNA. RNA and pols(A) Nucleic Acids Res 25: 518 - 522

    Article  CAS  Google Scholar 

  • Benatti L, Nitti G, Solinas M, Valsasina B, Vitale A, Ceriotti A (1991) A saporin-6 cDNA containing a precursor sequence coding for a carboxyl-terminal extension. FEBS Lett 291: 285 - 288

    Article  PubMed  CAS  Google Scholar 

  • Bolognesi A, Barbieri L, Abbondanza A, Falasca AI, Carnicelli D, Battelli MG, Stirpe F (1990) Purification and properties of new ribosome inactivating proteins with RNA N-glycosidase activity. Biochim Biophys Acta 1087: 293 - 302

    Article  PubMed  CAS  Google Scholar 

  • Bonness MB, Ready MP, Irvin JD, Mabry TJ (1994) Pokeweed antiviral protein inactivates pokeweed ribosomes: implications for the antiviral mechanism. Plant J 5: 173 - 183

    Article  PubMed  CAS  Google Scholar 

  • Brigotti M, Carnicelli D, Alvergna P, Pallanca A, Sperti S, Montanaro L (1995) Differential up-regulation by tRNAs of ribosome-inactivating proteins. FEBS Lett 373: 115 - 118

    Article  PubMed  CAS  Google Scholar 

  • Carnicelli D, Brigotti M, Montanaro L, Sperti S (1992) Differential requirements of ATP and extra-ribosomal proteins for ribosome inactivation by eight RNA-N-glycosidases. Biochem Biophys Res Commun 182: 579

    Article  PubMed  CAS  Google Scholar 

  • Chaddock IA, Lord JM, Hartley MR, Roberts LM (1994) Pokeweed antiviral protein (PAP) mutations which permit E.co/i growth do not eliminate catalytic activity towards prokaryotic ribosomes. Nucleic Acids Res 22: 1536 - 1554

    Article  PubMed  CAS  Google Scholar 

  • Chaddock IA, Monzingo AF, Robertus JD, Lord JM, Roberts LM (1996) Major structural differences between pokeweed antiviral protein and ricin A-chain do not account for their differing ribosome specificity. Eur J Biochem 235: 159 - 166

    Article  PubMed  CAS  Google Scholar 

  • Chen ZC, White RF, Antoniw JF, Lin Q (1991) Effect of pokeweed antiviral protein ( PAP) on the infection of viruses. Plant Pathology 40: 612–620

    Google Scholar 

  • Dinman JD, Icho T, Wickner RB (1991) A-1 ribosomal frameshift in a double-stranded RNA virus forms a Gag-Pol fusion protein. Proc Natl Acad Sci USA 88: 174 - 178

    Article  PubMed  CAS  Google Scholar 

  • Dinman JD (1995) Ribosomal frameshifting in yeast viruses. Yeast 11: 1115 - 1127

    Article  PubMed  CAS  Google Scholar 

  • Dinman JD, Wickner RB (1992) Ribosomal frameshifting efficiency and Gag:Gag-pol ratio are critical for yeast MI double-stranded RNA virus propagation. J Virology 66: 3669 - 3676

    PubMed  CAS  Google Scholar 

  • Duggar BM, Armstrong JK (1925) The effect of treating virus of tobacco mosaic with juice of various plants. Ann Mol Bot Gard 12: 359

    Article  Google Scholar 

  • Endo Y, Tsurugi K (1987) RNA N-glycosidase activity of ricin A-chain: mechanism of action of the toxic lectin ricin on eukaryotic ribosomes. J Biol Chem 262: 8128 - 8130

    PubMed  CAS  Google Scholar 

  • Endo Y, Tsurugi K, Lambert JM (1988) The site of action of six different ribosome-inactivating proteins from plants on eukaryotic ribosomes: the RNA N-glycosidase activity of the proteins. Biochem Biophys Res Commun 150: 1032 - 1036

    Article  PubMed  CAS  Google Scholar 

  • Erice A, Balfour HH Jr, Myers DE, Leske VL, Sannerud KJ, Kuebelbeck V, Irvin JD, Uckun FM (1993) Anti-human immunodeficiency virus type 1 activity of an anti-CD4 immunoconjugate containing pokeweed antiviral protein. Antimicrob Agents Chemother 37: 835 - 838

    Article  PubMed  CAS  Google Scholar 

  • Ferreras JM, Barbieri L, Girbes T, Battelli MG, Rojo MA, Arias EI, Rocher MA, Soriano F, Mendez E, Stirpe F (1993) Distribution and properties of major ribosome-inactivating proteins (288 rRNA Nglycosidases) of the plant Saponaria ofticinalis L (Caryophyllaceae) Biochim Biophys Acta 1216: 31 - 42

    Article  PubMed  CAS  Google Scholar 

  • Frankel A, Schlossman D, Welsh P, Hertler A, Withers D, Johnston S (1989) Selection and character-ization of ricin toxin A-chain mutations in Saccharomyces cerevisiae. Mol Cell Biol 9: 415 - 420

    PubMed  CAS  Google Scholar 

  • Funatsu G, Islam MR, Minami Y, Kung S, Kimura M (1991) Conserved amino acid residues in ribosome-inactivating proteins from plants. Biochemie 73: 1157 - 1161

    Article  CAS  Google Scholar 

  • Gessner SL, Irvin JD (1980) Inhibition of elongation factor 2-dependent translocation by pokeweed antiviral protein and ricin. J Biol Chem 255: 3251 - 3253

    PubMed  CAS  Google Scholar 

  • Gesteland RF, Atkins JF (1996) Recoding: dynamic reprogramming of translation. Annu Rev Biochem 65: 741 - 768

    Article  PubMed  CAS  Google Scholar 

  • Gluck A, Endo Y, Wool IG (1992) Ribosomal RNA identity elements for ricin A-chain recognition and catalysis: analysis with tetraloop mutants. J Mol Biol 226: 411 - 424

    Article  PubMed  CAS  Google Scholar 

  • Grasso S, Jones P, White RF (1979) Inhibition of tobacco mosaic virus multiplication in tobacco protoplasts by the pokeweed inhibitor. Phytopathology 98: 53 - 58

    Google Scholar 

  • Hartley MR, Legname G, Osborn R, Chen Z, Lord MJ (1991) Single-chain ribosome inactivating proteins from plants depurinate Escherichia coli 23S ribosomal RNA. FEBS Lett 290: 65 - 68

    Article  PubMed  CAS  Google Scholar 

  • Hayashi S, Wu HC (1990) Lipoproteins in bacteria. J Bioenenerg Biomembr 22: 451 - 471

    Article  CAS  Google Scholar 

  • Hong Y, Saunders K, Hartley MR, Stanley J (1996) Resistance to geminivirus infection by virus-inducedexpression of diathin in transgenic plants. Virology 220: 119 - 127

    Article  PubMed  CAS  Google Scholar 

  • Houston LL, Ramakrishnan S, Hermodson MA (1983) Seasonal variations in different forms of pokeweed antiviral protein, a potent inactivator of ribosomes. J Biol Chem 258: 9601 - 9604

    PubMed  CAS  Google Scholar 

  • Huang PL, Chen HC, Kung HF, Huang PL, Huang P, Huang HI, Lee-Huang S (1992) Anti-HIV plant proteins catalyze topological changes of DNA into inactive forms. Biofactors 4: 37 - 41

    PubMed  CAS  Google Scholar 

  • Hur Y, Hwang D-J, Zoubenko O, Coetzer C, Uckun F, Turner NE (1995) Isolation and characterization of pokeweed antiviral protein in Saccharomyces cerevisiae: identification of residues important for toxicity. Proc Natl Acad Sci USA 92: 8448 - 8452

    Article  PubMed  CAS  Google Scholar 

  • Irvin JD (1975) Purification and partial characterization of the antiviral protein from Phytolacca americana which inhibits eukaryotic protein synthesis. Arch Biochem Biophys 169: 522 - 528

    Article  PubMed  CAS  Google Scholar 

  • Irvin JD, Uckun FM (1992) Pokeweed antiviral protein: ribosome inactivation and therapeutic applications. Pharmacol Ther 55: 279 - 302

    Article  PubMed  CAS  Google Scholar 

  • Irvin JD (1995) Antiviral proteins from Phytolacca. In: Chessin M, De Borde D, Zipf A reds) Antiviral proteins in higher plants. CRC, Boca Raton, pp 65 - 94

    Google Scholar 

  • Irvin JD, Kelly T, Robertus JD (1980) Purification and properties of a second antiviral protein from Phytolacca americana which inactivates eukaryotic ribosomes. Arch Biochem Biophys 200: 418 - 425

    Article  PubMed  CAS  Google Scholar 

  • Islam MR, Kung S, Kimura Y, Funatsu G (1991) N-acetyl-D-glucosamine asparagine structure in ribosome-inactivating proteins from the seeds of Luffa cilindrica and Phytolacca americana. Agricult Biol Chem 55: 1375 - 1381

    Article  CAS  Google Scholar 

  • Jach G, Gornhardt B, Mundy J, Logemann J, Pinsdorf E, Leah R, Schell J, Maas C (1995) Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley anti-fungal proteins in transgenic tobacco. Plant J 8: 97 - 109

    Article  PubMed  CAS  Google Scholar 

  • Kataoka J, Habuka N, Furuno M, Miyano M, Takanami Y, Kiowai A (1991) DNA sequence of Mirabilis antiviral protein (MAP), a ribosome-inactivating protein with an antiviral property, from Mirabilis jalapa L. and its expression in Escherichia coli. J Biol Chem 266: 8426 - 8430

    PubMed  CAS  Google Scholar 

  • Kumon K, Sasaki J, Sejima M, Takeuchi Y, Hayashi Y (1990) Interactions between tobacco mosaic virus, pokeweed antiviral proteins, and tobacco cell wall. Phytopathology 80: 636 - 641

    Article  CAS  Google Scholar 

  • Kung S, Kimura M, Funatsu G (1990) The complete amino acid sequence of antiviral protein from the seeds of pokeweed (Phytolacca americana) Agricult Biol Chem 34: 3301

    Article  Google Scholar 

  • Lam YH, Wong B, Wang RN-S, Yeung HW, Shaw PC (1996) Use of trichosanthin to reduce infection by turnip mosaic virus. Plant Sci 114: 111 - 117

    Article  CAS  Google Scholar 

  • Lee-Huang S, Kung HF, Huang PL, Bourinbaiar AR, Morell JL, Brown JH, Huang PL, Tsai WP, Chen AY, Huang HI (1994) Human immunodeficiency virus type I (HIV-1) inhibition, DNA-binding, RNA-binding, and ribosome inactivating activities in the N-terminal segments of the plant anti-HIV protein GAP31. Proc Nat] Acad Sci USA 91: 12208 - 12212

    Article  CAS  Google Scholar 

  • Legname G, Bellosta P, Gromo G, Modena D, Keen JN, Roberts IN, Lord JM (1991) Nucleotide sequence of eDNA coding for dianthin 30, a ribosome inactivating protein from Dianthus caryophyllus. Biochim Biophys Acta 1090: 119 - 122

    Article  PubMed  CAS  Google Scholar 

  • Li MX, Yeung HW, Pan LP, Chan SI (1991) Trichosanthin, a potent HIV-1 inhibitor, can cleave supercoiled RNA in vitro. Nucleic Acids Res 19: 6309 - 66312

    Article  PubMed  CAS  Google Scholar 

  • Lin A, Lee TM, Rern JC (1994) Tricholin, a new antifungal agent from Trichoderma viride, and its action in biological control of Rhizoctonia solani. J Antibiotics 47: 799 - 805

    Article  CAS  Google Scholar 

  • Lin Q, Chen ZC, Antoniw JF, White RF (1991) Isolation and characterization of a cDNA clone encoding the anti-viral protein from Phrtolucca americana. Plant Mol Biol 17: 609 - 614

    Article  PubMed  CAS  Google Scholar 

  • Ling J, Liu W, Wang TP (1994) Cleavage of supercoiled double-stranded RDNA by several ribosome-inactivating proteins in vitro. FEBS Lett 345: 143 - 146

    Article  PubMed  CAS  Google Scholar 

  • Lodge JK, Kaniewski WK, Turner NE (1993) Broad-spectrum virus resistance in transgenic plants expressing pokeweed antiviral protein. Proc Natl Acad Sci USA 90: 7089 - 7093

    Article  PubMed  CAS  Google Scholar 

  • Logemann J. Jach G, Tommerup H. Mundy J. Schell J (1992) Expression of barley ribosome-inactivating protein leads to increased fungal protection in transgenic tobacco plants. Biotechnology 10:305–308

    Google Scholar 

  • Lord JM, Roberts LM, Robertus JD (1994) Ricin: structure, mode of action and some current appli-cations. FASEB J 8: 201 - 208

    PubMed  CAS  Google Scholar 

  • Maddaloni M, Forlani F, Bulmas V, Donini G, Stasse L, Corazza L, Motto M (1997) Tolerance to the fungal pathogen Rhi=ocionia solmii AG4 of transgenic tobacco expressing the maize ribosome-inactivating protein b-32. Transgenic Res 6: 393 - 402

    Article  CAS  Google Scholar 

  • Marchant A, Hartley MR (1995) The action of pokeweed antiviral protein and ricin A-chain on mutants in the x-sarcin loop of Escherichia coli 23S ribosomal RNA. J Mol Biol 254: 848 - 855

    Article  PubMed  CAS  Google Scholar 

  • Menninger JR (1975) Peptidyl transfer RNA dissociates during protein synthesis from ribosomes of Escherichia coli. J Biol Chem 251: 3392 - 3398

    Google Scholar 

  • Monzingo AF, Robertus JD (1992) X-ray analysis of substrate analogs in the ricin A chain active site. J Mol Biol 227: 1136 - 1145

    Article  PubMed  CAS  Google Scholar 

  • Monzingo AF, Collins EJ, Ernst SR, Irvin JD, Robertus JD (1993) The 2.5 A structure of pokeweed antiviral protein. J Mol Biol 233: 705 - 715

    Article  PubMed  CAS  Google Scholar 

  • Myers DE, Irvin JD, Smith RS, Kuebelbeck VM, Tuel-Ahlgren L, Uckun FM (1991) Large scale production of a pokeweed antiviral protein (PAP) containing immunotoxin B43-PAP directed against the CD19 human B-lineage differentiation antigen. J Immunol Methods 136: 221

    Article  PubMed  CAS  Google Scholar 

  • Nicolas E, Beggs JM, Haltiwanger BM, Taraschi TF (1997) Direct evidence for the deoxyribonuclease activity of the plant ribosome inactivating protein gelonin. FEBS Lett 406: 162 - 164

    Article  PubMed  CAS  Google Scholar 

  • Nicholls A, Sharp K, Honig B (1991) Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Prot Struct Funct Genet 11: 281 - 296

    Article  CAS  Google Scholar 

  • Obrig TG, Moran TP, Colinas RJ (1985) Ribonuclease activity associated with the 60 S ribosome-inactivating proteins ricin A, phytolaccin and shiga toxin. Biochern Biophys Res 130: 879 - 884

    Article  CAS  Google Scholar 

  • Poyet J-L. Radom J, Hoeveler A (1994) Isolation and characterization of a cDNA clone encoding the pokeweed antiviral protein II from Plnvolacca americium and its expression in E. coli. FEBS Lett 347: 268 - 272

    Article  PubMed  CAS  Google Scholar 

  • Poyet J-L, Hoeveler A (1997) cDNA cloning and expression of pokeweed antiviral protein from seeds in Escherichia coli and its inhibition of protein synthesis in vitro. FEBS Lett 406: 97

    Article  Google Scholar 

  • Ready MP, Brown DT, Robertus JD (1986) Extracellular localization of pokeweed antiviral protein. Proc Natl Acad Sci USA 84: 5053 - 5056

    Article  Google Scholar 

  • Ready M, Kim Y, Robertus JD (1991) Site-directed mutagenesis of ricin a-chain and implications for the mechanism of action. Proteins 10: 270 - 278

    Article  PubMed  CAS  Google Scholar 

  • Robertus J (1991) The structure and action of ricin, a cytotoxic N-glycosidasc. Semin Cell Biol 2: 23 - 30

    PubMed  CAS  Google Scholar 

  • Rodes III TL, Irvin JD (1981) Reversal of the inhibitory effects of the pokeweed antiviral protein upon protein synthesis. Biochim Biophys Acta 652: 160 - 167

    Article  PubMed  CAS  Google Scholar 

  • Ross AF (1961) Systemic acquired resistance induced by localized virus infections in plants. Virology 14: 340 - 358

    Article  PubMed  CAS  Google Scholar 

  • Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner H-Y, Hunt M (1996) Systemic acquired resistance. Plant Cell 8: 1809 - 1819

    PubMed  CAS  Google Scholar 

  • Shepherd RJ, Fulton JP, Wakeman RJ (1969) Properties of a virus causing pokeweed mosaic. Phytopathology 59: 219 - 222

    Google Scholar 

  • Smirnov S, Shulev V, Tamer NE (1997) Expression of pokeweed antiviral protein in transgenic plants induces virus resistance in grafted wild-type plants independently of salicylic acid accumulation and pathogenesis-related protein synthesis. Plant Physiol 114: 1113 - 1121

    PubMed  CAS  Google Scholar 

  • Stevens WA (1981) Effect of inhibitors of protein synthesis from plants on tobacco mosaic virus infection. Experientia 37: 257 - 259

    Article  CAS  Google Scholar 

  • Stirpe F, Barbieri L, Gorini P, Valbonesi P, Bolognesi A, Polito L (1996) Activities associated with the presence of ribosome-inactivating proteins increase in senescent and stressed leaves. FEBS Lett 382: 309 - 312

    Article  PubMed  CAS  Google Scholar 

  • Taylor S, Massiach A, Lomonossoff G, Roberts LM, Lord JM, Hartley M (1994) Correlation between the activities of five ribosome-inactivating proteins in depurination of tobacco ribosomes and inhibition of tobacco mosaic virus infection. Plant J 5: 827 - 835

    Article  PubMed  CAS  Google Scholar 

  • Teltow GJ, Irvin JD, Aron GM (1983) Inhibition of Herpes Simplex Virus DNA Synthesis by Pokeweed Antiviral Protein. Antimicro Agents Chemo 23: 390 - 396

    Article  CAS  Google Scholar 

  • Thompson RC, Dix DB (1982) Accuracy of protein biosynthesis. J Biol Chem 257: 6677 - 6682

    CAS  Google Scholar 

  • Tomlinson JA, Walker VM, Flewett TH, Barclay GR (1974) The inhibition of infection by cucumber mosaic virus and influenza virus by extracts from Phytolacca americana. J Gen Virol 22: 225 - 232

    Article  PubMed  CAS  Google Scholar 

  • Turner NE, Hwang D-J, Bonness M (1997) C-terminal deletion mutant of pokeweed antiviral protein inhibits viral infection but does not depurinate host ribosomes. Proc Natl Acad Sci USA 94: 3866 - 3871

    Article  Google Scholar 

  • Turner NE, Parikh BA, Li P, Dinman JD (1998) The pokeweed antiviral protein specifically inhibits Tyldirected + I ribosomal frameshifting and retrotransposition in Saccharomyces cerevisiae. J Virology 72: 1036 - 1042

    Google Scholar 

  • Uhlenbeck OC (1995) Keeping RNA happy. RNA 1: 4 - 6

    PubMed  CAS  Google Scholar 

  • Ussery MA, Hardesty B (1977) Inhibition of poliovirus replication by a plant antiviral peptide. Ann NY Acad Sci 284: 431 - 440

    Article  PubMed  CAS  Google Scholar 

  • Vernooij B, Friedrich L, Morse A, Reist R, Kolditz-Jawhar R, Ward E (1994) Salicylic acid is not the translocated signal responsible for inducing systemic acquired resistance but is required in signal transduction. Plant Cell 6: 959 - 965

    PubMed  CAS  Google Scholar 

  • Waddick KG, Gunther R, Chelstrom LM, Chandan-Langlie M, Myers DE, Irvin JD (1995) In vitro and in vivo anti-leukemic activity of B43 (anti-CD-19)-pokeweed antiviral protein immunotoxin against radiation resistant human pre-B acute lymphoblastic leukemia cells. Blood 86: 4228 - 4233

    PubMed  CAS  Google Scholar 

  • Wales R, Roberts LM, Lord MJ (1993) Addition of an endoplasmic reticulum retrieval sequence to ricin A-chain significantly increases its cytotoxicity to mammalian cells. J Biol Chem 268: 23986 - 23990

    PubMed  CAS  Google Scholar 

  • Zarling JM, Moran PA, Haffar O, Sias J, Richman DD, Spina CA, Myers DE, Kuebelbeck V, Ledbetter JA, Uckun FM (1990) Inhibition of HIV replication by pokeweed antiviral protein targeted to CD4 cells by monoclonal antibodies. Nature 347: 92 - 95

    Article  PubMed  CAS  Google Scholar 

  • Zoubenko O, Uckun F, Hur Y, Chet I, Turner N (1997) Plant resistance to fungal infection induced by nontoxic pokeweed antiviral protein mutants. Nature/Biotech 15: 992 - 996

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tumer, N.E., Hudak, K., Di, R., Coetzer, C., Wang, P., Zoubenko, O. (2000). Pokeweed Antiviral Protein and Its Applications. In: Hammond, J., McGarvey, P., Yusibov, V. (eds) Plant Biotechnology. Current Topics in Microbiology and Immunology, vol 240. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60234-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60234-4_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66265-5

  • Online ISBN: 978-3-642-60234-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics