Skip to main content

Overview: The Many Uses and Applications of Transgenic Plants

  • Chapter
Plant Biotechnology

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 240))

  • 542 Accesses

Abstract

In this volume we provide background information on the principles, practices, and common methods used for generation of transgenic plants. together with selected examples of the potential for transgenic plants and engineered plant viruses to produce high-value products. The fields of transgenic plants and engineered viruses are expanding so rapidly that it is not possible to cover all of the areas being examined. We have therefore selected chapters addressing only a few areas in detail. Some other areas have been addressed recently, and we review briefly some of these topics in this introductory chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aspegren K, Mannonen L, Ritala A, Teal TH (1996) Production of fungal, heat-stable 13-glucanase in suspension cultures of transgenic barley cells. In: Owen MRL, Pen J (eds) Transgenic plants: a production system for industrial and pharmaceutical proteins. Wiley. Chichester. pp 201–212

    Google Scholar 

  • Baulcombe DC (1996) Mechanisms of pathogen-derived resistance to viruses in transgenic plants. Plant Cell 8:1833–1844

    PubMed  CAS  Google Scholar 

  • Beachy RN, Loesch-Fries S, Turner NE (1990) Coat protein-mediated resistance against virus infection. Annu Rev Phytopathol 28:451–474

    Article  CAS  Google Scholar 

  • Beudeker RF (1996) Commercialization of phytase-containing seeds. In: Owen MRL, Pen J (eds) Transgenic plants: a production system for industrial and pharmaceutical proteins. Wiley, Chichester, pp 329–337

    Google Scholar 

  • Bidney D, Scelonge C, Martich J, Burrus M, Sims L, Huffman G (1992) Microprojectile bombardment of plant tissues increases transformation frequency by Agrobacterium tumefaciens. Plant Mol Biol 18:301–313

    Article  PubMed  CAS  Google Scholar 

  • Boulter D (1993) Insect pest control by copying nature using genetically engineered crops. Phytochemistry 34:1453–1466

    Article  PubMed  CAS  Google Scholar 

  • Brisson N, Paszkowski J, Penswick JR, Gronenborn B, Potrykus I, Hohn T (1984) Expression of a bacterial gene in plants by using a viral vector. Nature 310:511–514

    Article  CAS  Google Scholar 

  • Broekaert WF, Terras FRG, Cammue BPA, Osborn RW (1995) Plant defensins: Novel antimicrobial peptides as components of the host defence system. Plant Physiol 108:1353–1358

    Article  PubMed  CAS  Google Scholar 

  • Burchi G, Griesbach RJ, Mercuri A, De Benedetti L, Priore D, Schiva T (1995) In vivo electrotransfection: transient GUS expression in ornamentals. J Genet Breeding 49:163–168

    Google Scholar 

  • Caddick MX, Greenland AJ, Jepson I, Krause, K-P, Qu N, Riddell KV, Salter MG, Schuch W, Sonnewald U, Thomsett AB (1998) An ethanol inducible gene switch for plants used to manipulate carbon metabolism. Nature Biotechnology 16:177–180

    Article  PubMed  CAS  Google Scholar 

  • Carmona MJ, Molina A, Fernandez JA, López-Fando JJ, García-Olmedo F (1993) Expression of the athionin gene from barley in tobacco confers enhanced resistance to bacterial pathogens. Plant J 3: 457–462

    Article  PubMed  CAS  Google Scholar 

  • Chrispeels MJ, Faye L (1996) The production of recombinant glycoproteins with defined non-immunogenic glycans. In: Owen MRL, Pen J (eds) Transgenic plants: a production system for industrial and pharmaceutical proteins. Wiley, Chichester, pp 99–113

    Google Scholar 

  • Conceição ADa S, Raikhel NV (1996) Accumulation of soluble proteins in the endomembrane system of plants. In: Owen MRL, Pen J (eds) Transgenic plants: a production system for industrial and pharmaceutical proteins. Wiley, Chichester, pp 75–98

    Google Scholar 

  • Cooper B, Lapidot M, Heick JA, Dodds JA, Beachy RN (1995) A defective movement protein of TMV in transgenic plants confers resistance to multiple viruses whereas the functional analog increases susceptibility. Virology 206:307–313

    Article  PubMed  CAS  Google Scholar 

  • Cornelissen, BJC, Melchers LS (1993) Strategies for control of fungal diseases with transgenic plants. Plant Physiol 101:709–712

    PubMed  CAS  Google Scholar 

  • Cramer CL, Weissenborn DL, Oishi KK, Radin DN (1996) High-level production of enzymatically active human lysosomal proteins in transgenic plants. In: Owen MRL, Pen J (eds) Transgenic plants: a production system for industrial and pharmaceutical proteins. Wiley, Chichester, pp 299–310

    Google Scholar 

  • Dalsgaard K, Uttenthal A, Jones TD, Xu F, Merryweather A, Hamilton WDO, Langeveld JPM, Boshuizen RS, Kamstrup S, Lomonossoff GP, Porta C, Vela C, Casal JI, Meloen RH, Rodgers PB (1997) Plant-derived vaccine protects target animals against a viral disease. Nat Biotechnol 15:248–252

    Article  PubMed  CAS  Google Scholar 

  • De Block M, Botterman J, Vanderwiele M, Dockx J, Thoen C, Gosselé V, Rao Movva N, Thompson C, Van Montagu M, Leemans J (1987) Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO J 6:2513–2518

    PubMed  CAS  Google Scholar 

  • De Zoeten GA, Penswick JR, Horisberger MA, Ahl P, Schultze M, Hohn T (1989) The expression, localization, and effect of a human interferon in plants. Virology 172:213–222

    Article  PubMed  Google Scholar 

  • Della-Cioppa G, Grill LK (1996) Production of novel compounds in higher plants by transfection with RNA viral vectors. Ann NY Acad Sci 792:57–61

    Article  CAS  Google Scholar 

  • Dixon RA, Lamb CJ, Paiva NL, Masoud S (1996) Improvement of natural defense responses. Ann NY Acad Sci 792:126–139

    Article  CAS  Google Scholar 

  • During K, Fladung M, Lörz H (1992) Antibacterial resistance of transgenic potato plants producing T4 lysozyme. In: Nester EE, Verma DPS (eds) Advances in molecular genetics of plant-microbe interactions. Kluwer, Dordrecht, pp 573–577

    Google Scholar 

  • English JJ, Mueller E, Baulcombe DC (1996) Suppression of virus accumulation in transgenic plants exhibiting silencing of nuclear genes. Plant Cell 8:179–188

    PubMed  CAS  Google Scholar 

  • Florack D, Allefs S, Bollen R, Bosch D, Visser B, Stiekema W (1995) Expression of giant silkmoth cecropin B encoding genes in transgenic tobacco. Transgenic Res 4:132–141

    Article  PubMed  CAS  Google Scholar 

  • Ganz PR, Dudani AK, Tackaberry ES, Sardana R, Sander C, Cheng X, Altosaar I (1996) Expression of human blood proteins in transgenic plants: the cytokine GM-CSF as a model protein. In: Owen MRL, Pen J (eds) Transgenic plants: a production system for industrial and pharmaceutical proteins. Wiley, Chichester, pp 281 297

    Google Scholar 

  • Gatz C (1996) Chemically inducible promoters in transgenic plants. Curr Opin Biotechnol 7:168–172

    Article  CAS  Google Scholar 

  • Gressel J, Ransom JK, Hassan EA (1996) Biotech-derived herbicide-resistant crops for Third World needs. Ann NY Acad Sci 792:140–153

    Article  CAS  Google Scholar 

  • Grierson D, Fray R (1994) Control of ripening in transgenic tomatoes. Euphytica 79:251–263

    Article  CAS  Google Scholar 

  • Griesbach RJ (1994) An improved method for transforming plants through electrophoresis. Plant Sci 102:81–89

    Article  CAS  Google Scholar 

  • Gronenborn B, Gardner RC, Schaefer S, Shepherd RJ (1981) Propagation of foreign DNA in plants using cauliflower mosaic virus as vector. Nature 294:773–776

    Article  CAS  Google Scholar 

  • Habben JE, Larkins BA (1995) Genetic modification of seed proteins. Curr Opin Biotechnol 6:171–174

    Article  PubMed  CAS  Google Scholar 

  • Hadi MZ, McMullen MD, Finer JJ (1996) Transformation of 12 different plasmids into soybean via particle bombardment. Plant Cell Rep 15:500–505

    Article  CAS  Google Scholar 

  • Hamilton CM, Frary A, Lewis C, Tanksley SD (1996) Stable transfer of intact high molecular weight DNA into plant chromosomes. Proc Natl Acad Sci USA 93:9975–9979

    Google Scholar 

  • Hammond J (1996) Biotechnology and resistance. Acta Horticulturae 432:246 256

    Google Scholar 

  • Hammond J (1997) Repelling plant pathogens with ribonuclease. Nat Biotech 15:1247

    Article  CAS  Google Scholar 

  • Hammond J, Kamo KK (1995) Effective resistance to potyvirus infection in transgenic plants expressing antisense RNA. Mol Plant-Microbe Interact 8:674–682

    Article  PubMed  CAS  Google Scholar 

  • Haq TA, Mason HS, Clements JD, Arntzen O (1995) Oral immunization with a recombinant bacterial antigen produced in transgenic plants. Science 268:714–716

    Article  PubMed  CAS  Google Scholar 

  • Hatti-Kaul R, Mattiasson B (1996) Downstream processing of proteins from transgenic plants. In: Owen MRL, Pen J (eds) Transgenic plants: a production system for industrial and pharmaceutical proteins. Wiley, Chichester, pp 115–147

    Google Scholar 

  • Hiatt A (1990) Antibodies produced in plants. Nature 344:469–470

    Article  PubMed  CAS  Google Scholar 

  • Hood EE, Witcher DR, Maddock S, Meyer T, Baszczynski C, Bailey M, Flynn P, Register J, Marshall L, Bond D, Kulisek E, Kusnadi A, Evangalista R, Nikolov Z, Wooge C, Mehigh RJ, Hernan R, Kappel W, Ritland D, Li CP, Howard JA (1997) Commercial production of avidin from transgenic maize: characterization of transformant, production, processing, extraction and purification. Mol Breeding 3:291–306

    Article  CAS  Google Scholar 

  • Huang Y, Nordeen RD, Di M, Owens LD, McBeath JH (1997) Expression of an engineered cecropin gene cassette in transgenic tobacco plants confers disease resistance to Po iulomonus s,rringae py. tabaci. Phytopathology 87:494–499

    Article  PubMed  CAS  Google Scholar 

  • Huskisson FM (1996) Patents and biotechnology. In: Owen MRL, Pen J (eds) Transgenic plants: a production system for industrial and pharmaceutical proteins. Wiley, Chichester. pp 3133–28

    Google Scholar 

  • Jaynes JM, Nagpala P, Destéfano-Beltrètn L, Huang JH, Kim J, Denny T, Cetiner S (1993) Expression of a Cecropin B lytic peptide analog in transgenic tobacco confers enhanced resistance to bacterial wilt caused by Pseudomunas solanacearunr. Plant Sci 89:43–53

    Article  CAS  Google Scholar 

  • Kearney CM, Donson J, Jones GE, Dawson WO (1993) Low level of genetic drift in foreign sequences replicating in an RNA virus in plants. Virology 192:11–17

    Article  PubMed  CAS  Google Scholar 

  • Kjeldgaard RH, Marsh DR (1996) Recent United States developments in plant patents. Mol Breeding 2:95–96

    Article  Google Scholar 

  • Koziel MG, Behind GL, Bowman C, Carozzi NB, Crenshaw R, Crossland L, Dawson J, Desai N, Hill M, Kadwell K, Launis K, Lewis K, Maddox D, McPherson K, Meghji MR, Merlin E, Rhodes R, Warren GW, Wright M, Evola SV (1993) Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Biotechnology 11:194–200

    Google Scholar 

  • Koziel MG, Carozzi NB, Desai N, Warren GW, Dawson J, Dunder G Launis K. E’ola SV (1996) Transgenic maize for the control of European corn borer and other maize insect pests. Ann NY Acad Sci 792:164–171

    Article  CAS  Google Scholar 

  • Kramer MG, Redenbaugh K (1994) Commercialization of a tomato with an antisense polygalacturonase gene: the FLAVRSAVR tomato story. Euphytica 79:293–297

    Article  Google Scholar 

  • Kridl JC, Shewmaker CK (1996) Food for thought: Improvement of food quality and composition through genetic engineering. Ann NY Acad Sci 792:1–12

    Article  CAS  Google Scholar 

  • Kühnel B, Holbrook LA, Moloney MM, van Rooijen GJH (1996) Oil bodies of transgenic Brassica unpin as a source of immobilized (3-glucuronidase. J Am Oil Chem Soc 73:1533–1538

    Article  Google Scholar 

  • Kumagai MH, Turpen TH, Weinzettl N, Della-Cioppa G, Turpen AM, Donson J, Hilf ME, Grantham GL, Dawson WO, Chow TP, Piatak M Jr, Grill LK (1993) Rapid high-level expression of biologically active x-trichosanthin in transfected plants by an RNA viral vector. Proc Natl Acad Sci USA 90: 427–430

    Article  PubMed  CAS  Google Scholar 

  • Lam YH, Wong B, Wang RN-S, Yeung HW, Shaw PC (1996) Use of trichosanthin to reduce infection by turnip mosaic virus. Plant Sci 114:111–117

    Article  CAS  Google Scholar 

  • Leah R, Tommerup H, Svendsen I, Mundy J (1991) Biochemical and molecular characterization of three barley seed proteins with antifungal properties. J Biol Chem 266:1564–1573

    PubMed  CAS  Google Scholar 

  • Lehrer SB, Homer WE, Reese G (1996) Why are some proteins allergenic? Implications for biotechnology. Crit Rev Food Sci Nutr 36:553–564

    Article  PubMed  CAS  Google Scholar 

  • Lehrer SB, Reese G (1997) Recombinant proteins in newly developed foods: identification of allergenic activity. Int Arch Allergy Immunol 113:122–124

    Article  PubMed  CAS  Google Scholar 

  • Lindbo JA, Dougherty WG (1992a) Pathogen-derived resistance to a potyvirus: Immune and resistant phenotypes in transgenic tobacco expressing altered forms of a potyvirus coat protein nucleotide sequence. Mol Plant-Microbe Interact 5:144–153

    Article  CAS  Google Scholar 

  • Lindbo JA, Dougherty WG (1992b) Untranslatable transcripts of the tobacco etch virus coat protein gene sequence can interfere with tobacco etch virus replication in transgenic plants and protoplasts. Virology 189:725–733

    Article  CAS  Google Scholar 

  • Lomonossoff GP (1995) Pathogen-derived resistance to plant viruses. Annu Rev Phytopathol 33:323–343

    Article  PubMed  CAS  Google Scholar 

  • Ma, JK-C, Hiatt A (1996) Expressing antibodies in plants for immunotherapy. In: Owen MRL, Pen J (eds) Transgenic plants: a production system for industrial and pharmaceutical proteins. Wiley, Chichester, pp 229–243

    Google Scholar 

  • Maurel C, Barbierbrygoo H, Spena A, Temp¨¦ J, Guern J (1991) Single roI genes from the Agrobacterium rhizogenes TL-DNA alter some of the cellular responses to auxin in Nicotiana tabacum. Plant Physiol 97:212–216

    Article  PubMed  CAS  Google Scholar 

  • McGarvey PB, Hammond J, Dienelt MM, Hooper DC, Fu ZF, Dietzschold B, Koprowski H, Michaels FH (1995) Expression of the rabies virus glycoprotein in transgenic tomatoes. Biotechnology 13:1484 system functions as an antiviral pathway in transgenic plants. Proc Natl Acad Sci USA 93:6780–67851487

    Google Scholar 

  • Mett V, Lochhead LP, and Reynolds PHS (1993) Copper-controllable gene expression system for whole plants. Proc Natl Acad Sci USA 90:4567–4571

    Article  PubMed  CAS  Google Scholar 

  • Metz J, Lassner M (1996) Reprogramming of oil synthesis in rapeseed: Industrial applications. Ann NY Acad Sci 792:82–90

    Article  CAS  Google Scholar 

  • Miele L (1997) Plants as bioreactors for biopharmaceuticals: regulatory considerations. Trends Biotechnol 15:45–50

    Article  PubMed  CAS  Google Scholar 

  • Mitra A, Higgins DW, Langenberg WG, Nie H, Sengupta DN, Silverman RH (1996) A mammalian 2–5A system functions as an antiviral pathway in transgenic plants. Proc Natl Acad Sci USA 93:6780–6785

    Article  PubMed  CAS  Google Scholar 

  • Murray E, Lotzer J, Eberle M (1989) Codon usage in plants. Nucleic Acids Res 17:477–498

    Article  PubMed  CAS  Google Scholar 

  • Nordlee JA, Taylor SL, Townsend JA, Thomas LA, Bush RK (1996) Identification of a Brazil-nutallergen in transgenic soybeans. N Engl J Med 334:688–692

    Article  PubMed  CAS  Google Scholar 

  • Olins PO, Lee SC (1993) Recent advances in heterologous gene expression in Escherichia coll. Curr Opin Biotechnol 4:520–525

    Article  PubMed  CAS  Google Scholar 

  • Owen MRL Gandecha A, Cockburn W, Whitelam GC (1992) Synthesis of a functional anti-phytochrome single-chain Fv protein in transgenic tobacco. Biotechnology 10:790–794

    Article  PubMed  CAS  Google Scholar 

  • Owen MRL, Cockburn W, Whitelam GC (1996) The expression of recombinant antibody fragments in plants. In: Owen MRL, Pen J (eds) Transgenic plants: a production system for industrial and pharmaceutical proteins. Wiley, Chichester, pp 245–260

    Google Scholar 

  • Pan A, Yang M, Tie F, Li L, Chen Z, Ru B (1994) Expression of mouse metallothionin-I gene confers cadmium resistance in transgenic tobacco plants. Plant Mol Biol 24:341–351

    Article  PubMed  CAS  Google Scholar 

  • Parmenter DL, Boothe JG, Moloney MM (1996) Production and purification of recombinant hirudin from plant seeds. In: Owen MRL, Pen J (eds) Transgenic plants: a production system for industrial and pharmaceutical proteins. Wiley, Chichester, pp 261–280

    Google Scholar 

  • Pelham HRB (1990) The retention signal for soluble proteins of the endoplasmic reticulum. Trends Biochem Sci 15:483–486

    Article  PubMed  Google Scholar 

  • Pen J (1996) Comparison of host systems for the production of recombinant proteins. In: Owen MRL, Pen J (eds) Transgenic plants: a production system for industrial and pharmaceutical proteins. Wiley, Chichester, pp 149–168

    Google Scholar 

  • Pen J, Verwoerd TC, van Paridon PA, Buedeker RF, van den Elzen PJM, Geerse K, van der Klis JD, Versteegh JAJ, van Ooyen AJJ, Hoekema A (1993) Phytase-containing transgenic seed as a novel feed additive for improved phosphorus utilization. Biotechnology 11:811–814

    Article  CAS  Google Scholar 

  • Penarrubia L, Kim R, Giovannoni J, Kim, S-II, Fischer RL (1992) Production of the sweet protein monellin in transgenic plants. Biotechnology 10:561–564

    Article  CAS  Google Scholar 

  • Perlak FJ, Fuchs RL, Dean DA, McPherson SL, Fischhoff DA (1991) Modification of the coding sequence enhances plant expression of insect control protein genes. Proc Natl Acad Sci USA 88:3324–3328

    Article  PubMed  CAS  Google Scholar 

  • Poirier YP, Dennis DE, Klomparens K, Somerville CR (1992) Production of polyhydroxybutyrate. a biodegradable thermoplastic, in higher plants. Science 256:520–523

    Article  PubMed  CAS  Google Scholar 

  • Rahme LG, Stevens EJ, Wolfort SF, Shao J, Tompkins RG, Ausubel FM (1995) Common virulence factors for bacterial virulence in plants and animals. Science 268:1899–1902

    Article  PubMed  CAS  Google Scholar 

  • Saalbach I, Pickardt T, Machemehl F, Saalbach G, Schneider O, Müntz K (1994) A chimeric gene encoding the methionine-rich 2 s albumin of the Brazil nut (BerthoI/utiu r-s e/ra ILK K.) is stably expressed and inherited in transgenic grain legumes. Mol Gen Genet 242:226–236

    Article  PubMed  CAS  Google Scholar 

  • Sanford JC, Johnston SA (1985) The concept of parasite-derived resistance deriving resistance genes from the parasite’s own genome. J Theor Biol 113:395–405

    Article  Google Scholar 

  • Sautter C, Waldner H, Neuhaus-Url G, Galli A, Niehaus G, Potrykus I (1991) Microtargeting: high efficiency gene transfer using a novel approach for the acceleration of micro-particles. Biotechnology 9:1084–1085

    Google Scholar 

  • Smith RAH, Bradshaw ALJ (1979) The use of metal tolerant plant populations for the reclamation of metalliferous waste. J Appl Ecol 16:595–612

    Article  CAS  Google Scholar 

  • Smith HA, Swaney SL, Parks TD, Wernsman EA, Dougherty WG (1994) Transgenic plant virus resistance mediated by untranslatable sense RNAs: Expression, regulation. and fate of non-essential RNAs. Plant Cell 6:1441–1453

    PubMed  CAS  Google Scholar 

  • Stark DM, Barry GF, Kishore GM (1996) Improvement of food quality traits through enhancement of starch biosynthesis. Ann NY Acad Sci 792:26–36

    Article  CAS  Google Scholar 

  • Sun SSM, Zuo W, Tu HM, Xiong L (1996) Plant proteins: engineering for improved quality. Ann NY Acad Sci 792:37–42

    Article  CAS  Google Scholar 

  • Tabler M, Tsagris M, Hammond J (1998) Antisense RNA- and ribozyme-mediated resistance to plant viruses. In: Hadidi A. Khetarpal RK, Koganezawa E (eds) Plant viral disease control. APS. St. Paul. pp 79–93

    Google Scholar 

  • Tavladoraki P, Benvenuto E, Trinca S, De Martinis D, Cattaneo A, Galeflli P (1993) Transgenic plants expressing a functional single-chain Ft’ antibody are specifically protected against virus attack. Nature 366:469–472

    Article  PubMed  CAS  Google Scholar 

  • Tepfer D (1984) Transformation of several species of higher plants by Agrobuctcrium rhi:ogenes: sexual transmission of the transformed genotype and phenotype. Cell 47:959–967

    Article  Google Scholar 

  • van Vloten-Doting L, Bol J F, Cornelissen BJM (1985) Plant-virus-based vectors for gene transfer will be of limited use because of the high error frequency during viral RNA synthesis. Plant Mol Biol 4: 323–326

    Article  Google Scholar 

  • Verwoerd TC, Pen J (1996) Phytase produced in transgenic plants for use as a novel feed additive. In: Owen MRL, Pen J (eds) Transgenic plants: a production system for industrial and pharmaceutical proteins. Wiley, Chichester, pp 213–225

    Google Scholar 

  • Von Schaewen A, Sturm A, O’Neill J, Chrispeels MJ (1993) Isolation of a mutant arabidopsis plant that lacks N-acetyl glucosaminyl transferase I and is unable to synthesise Golgi-modified complex N-linked glycans. Plant Physiol 102:1109–1118

    Article  Google Scholar 

  • Watanabe Y, Ogawa T, Takahashi H, Ishida I, Takeuchi Y, Yamamoto M, Okada Y (1995) Resistance against multiple plant viruses in plants mediated by a double stranded-RNA specific ribonuclease. FEBS Lett 372:165–168

    Article  PubMed  CAS  Google Scholar 

  • Xu D, Xue Q, McElroy D, Mawal Y, Hilder VA, Wu R (1996) Constitutive expression of a cowpea trypsin inhibitor gene, CpTi. in transgenic rice plants confers resistance to two major rice insect pests. Mol Breeding 2:167–173

    Article  CAS  Google Scholar 

  • Zhu Q, Maher EA, Masoud S, Dixon RA, Lamb CJ (1994) Enhanced protection against fungal attack by constitutive co-expression of chitinase and glucanase genes in transgenic tobacco. Biotechnology, 12:807–812

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hammond, J. (2000). Overview: The Many Uses and Applications of Transgenic Plants. In: Hammond, J., McGarvey, P., Yusibov, V. (eds) Plant Biotechnology. Current Topics in Microbiology and Immunology, vol 240. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60234-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60234-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66265-5

  • Online ISBN: 978-3-642-60234-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics