Skip to main content

Abstract

Wavelets are a powerful statistical tool which can be used for a wide range of applications, namely

  • describing a signal, nonparametic estimation

  • parsimonious (approximate) representation, data compression

  • smoothing and image denoising

  • jump detection and test procedures.

One of the main advantages of wavelets is that they offer a simultaneous localization in time and frequency domain. The second main advantage of wavelets is that, using fast wavelet transform, it is computationally very fast.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Coifman, R. R. and Donoho, D. (1995). Translation-invariant denoising, in Antoniadis and Oppenheim:Wavelets and Statistics, Lecture Notes in Statistics 103: 125 – 150.

    Google Scholar 

  • Daubechies, I. (1988). Orthonormal bases of compactly supported wavelets,Comm. Pure and Appl. Math. 41: 909 – 996.

    Article  MathSciNet  MATH  Google Scholar 

  • Daubechies, I. (1992).Ten Lectures on Wavelets, SIAM, Philadelphia.

    MATH  Google Scholar 

  • Donoho, D. and Johnstone, I. (1995). Adapting to unknown smoothness via wavelet shrinkage,Journal of the American Statistical Association 90: 1200 – 1224.

    Article  MathSciNet  MATH  Google Scholar 

  • Donoho, D. and Johnstone, I. (1998). Minimax estimation via wavelet shrinkage,Annals of Statistics 26: 879 – 921.

    Article  MathSciNet  MATH  Google Scholar 

  • Härdle, W., Kerkyacharian, G., Picard, D. and Tsybakov, A. (1998).Wavelets, Approximation, and Statistical Applications, Lecture Notes in Statistics 129, Springer Verlag, New York.

    Book  Google Scholar 

  • Kaiser, G. (1995).A Friendly Guide to Wavelets, Birkhäuser, Basel

    Google Scholar 

  • Nason, G. and Silverman, B. W. (1994). The discrete wavelet transform in S,Journal of Computer and System Science 3: 163 – 191.

    Google Scholar 

  • Neumann, M. (1996). Spectral density estimation via nonlinear wavelet methods for stationary non-gaussian time series,Journal of Time Series Analysis 17: 601 – 633.

    Article  MathSciNet  MATH  Google Scholar 

  • Neumann, M. (1996).Multivariate wavelet thresholding: a remedy against the curse of dimensionalityDiscussion Paper 42, SFB 373, Humboldt- Universitat zu Berlin, Germany

    Google Scholar 

  • Neumann, M. and Sachs, R. (1997). Wavelet thresholding in anisotropic function classes and application to adaptive estimation of evolutionary spectra,Annals of Statistics25: 38 – 76.

    MATH  Google Scholar 

  • Stein, C. M. (1981). Estimation of the mean of a multivariate normal distribution,Annals of Statistics 9 1135–1151.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Golubev, Y., Härdle, W., Hlávka, Z., Klinke, S., Neumann, M.H., Sperlich, S. (2000). Wavelets. In: XploRe — Learning Guide. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60232-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60232-0_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66207-5

  • Online ISBN: 978-3-642-60232-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics