Skip to main content

The Coronary Selectivity of Calcium Antagonists — Focus on CHD

  • Conference paper
Book cover Nisoldipine Coat-Core
  • 39 Accesses

Abstract

Calcium ions play an essential role in the contractility of skeletal and smooth muscle and of both the normal and diseased heart. Calcium channel blockers (CCBs), also termed calcium antagonists, calcium entry blockers or more simply calcium blockers (in French, anticalciques), inhibit the inward movement of calcium in depolarised muscles. This calcium influx occurs through L-type (long-lasting, large-current, or slow), voltage-dependent calcium channels. This results in relaxation of vascular smooth muscle and reduction of cardiac contractility. Although belonging to different chemical families (Fig. 1.1), CCBs are often assumed to be a pharmacologically homogeneous family of drugs. The common property of CCBs is their capacity to relax calcium-evoked contraction of depolarised smooth muscle (Godfraind and Polster 1968; Godfraind and Kaba 1969). Refined pharmacological studies show that variations in chemical structure may result in differences in binding sites, tissue selectivity, and, consequently, clinical activity and therapeutic indications (Godfraind et al. 1986).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Böhm M, Schwinger RHG, Erdmann E (1990) Different cardiodepressant potency of various calcium antagonists in human myocardium. Am J Cardiol 65: 1039–1041

    Article  PubMed  Google Scholar 

  • Boyd RA, Giacomini JC, Giacomini KM (1988) Species differences in the negative isotropic response of 1,4-dihydropyridine calcium channel blockers in myocardium. J Cardiovasc Pharmacol 12: 650–657

    Article  PubMed  CAS  Google Scholar 

  • Cohn JN, Ziesche S, Smith R et al (1997) Effect of the calcium antagonist felodipine as supplementary vasodilator therapy in patients with chronic heart failure treated with enalapril: V-HeFT III. Vasodilator-Heart Failure Trial (V-HeFT) Study Group. Circulation 96 (3): 856–863

    PubMed  CAS  Google Scholar 

  • Cristofori P, Terron A, Michelli D, Bertolini G, Gaviraghi G (1994) Lacidipine: experi- mental evidence of vasculoprotective properties. J Cardiovas Pharmacol 23: S90 - S93

    CAS  Google Scholar 

  • Feron O, Octave JN, Christen MO, Godfraind T (1994) Quantification of two splicing events in the L-type calcium channel al subunit of intestinal smooth muscle and other tissues. Eur J Biochem 222: 195–202

    Article  PubMed  CAS  Google Scholar 

  • Feron O, Salomone S, Godfraind T (1996) Action of the calcium channel blocker lacidipine on cardiac hypertrophy and endothelin-1 gene expression in stroke-prone hypertensive rats. Br J Pharmacol 118 (3) 659–664

    PubMed  CAS  Google Scholar 

  • Finet M, Godfraind T, Khoury G (1985) The positive inotropic action of a nifedipine analogue, Bay K 8644, in guinea-pig and rat isolated cardiac preparations. Br J Pharmacol 86: 27–32

    PubMed  CAS  Google Scholar 

  • Godfraind T, Kaba A (1969) Blockade or reversal of contraction induced by calcium and adrenaline in depolarized arterial smooth muscle. Br J Pharmacol 36: 549–560

    PubMed  CAS  Google Scholar 

  • Godfraind T, Polster P (1968) Etude comparative de médicaments inhibant la réponse contractile de vaisseaux isolés d’origine humaine ou animale. Thérapie 23: 1209–1220

    PubMed  CAS  Google Scholar 

  • Godfraind T, Salomone S (1996) Calcium antagonists and endothelial function: focus on nitric oxide and endothelin. Cardiovasc Drugs Ther 10 (4): 439–446

    Article  PubMed  CAS  Google Scholar 

  • Godfraind T, Salomone S (1997) New advances in hypertensive treatment with calcium antagonists. J Cardiovasc Pharmacol 30 (Suppl 2): S1 - S5

    Google Scholar 

  • Godfraind T (1994) Calcium antagonists and vasodilatation. Pharmacol Ther 64 (1): 3775

    Article  Google Scholar 

  • Godfraind T, Kaba A, Polster P (1966) Specific antagonism to the direct and indirect action of angiotensin on the isolated guinea-pig ileum. Br J Pharmacol Chemother 28: 93–104

    PubMed  CAS  Google Scholar 

  • Godfraind T, Miller RC, Wibo M (1986a) Calcium antagonism and calcium entry blockade. Pharmacol Rev 38: 321–416

    PubMed  CAS  Google Scholar 

  • Godfraind T, Morel N, Wibo M (1986b) The heterogeneity of calcium movements in cardiac and vascular smooth muscle cells. Scand J Clin Lab Invest 46 (Suppl 180): 29–40

    Google Scholar 

  • Godfraind T, Eglème C, Finet M, Jaumin P (1987) The actions of nifedipine and nisoldipine on the contractile activity of human coronary arteries and human cardiac tissue in vitro. Pharmacol Toxic 61: 79–84

    Article  CAS  Google Scholar 

  • Godfraind T, Morel N, Wibo M (1988) Tissue specificity of dihydropyridine-type calcium antagonists in human isolated tissues. Trends Pharmacol Sci 9: 37–39

    Article  PubMed  CAS  Google Scholar 

  • Godfraind T, Kazda S, Wibo M (1991) Effects of a chronic treatment by nisoldipine, a calcium antagonistic dihydropyridine, on arteries of spontaneously hypertensive rats. Circ Res 68: 674–682

    PubMed  CAS  Google Scholar 

  • Godfraind T, Dessy C, Salomone S (1992a) A comparison of the potency of selective L-calcium channel inhibitors in human coronary and internal mammary arteries exposed to serotonin. J Pharmacol Exp Ther 263: 112–122

    PubMed  CAS  Google Scholar 

  • Godfraind T, Morel N, Salomone S (1992b) Characterization in human coronary arteries of the binding sites responsible for the pharmacologic action of amlodipine: a comparison with animal vascular tissues. J Cardiovasc Pharmacol 20 (Suppl A): S33 - S39

    Google Scholar 

  • Godfraind T, Salomone S, Dessy C, Verhelst B, Dion R, Schoevaerts JC (1992c) Selectivity scale of calcium antagonists in the human cardiovascular system (based on in vitro studies). J Cardiovasc Pharmacol 20 (Suppl 5): S34 - S41

    PubMed  CAS  Google Scholar 

  • Hansen JF (1998) Is the safety and efficacy of calcium antagonists now established? Cardiovasc Drugs Ther 12: 145–147

    Article  PubMed  CAS  Google Scholar 

  • Kaplan NM (1998a) Commentary on the sixth report of the Joint National Committee (JNC-6). Am J Hypertens 11 (1 Pt 1): 134–136

    PubMed  CAS  Google Scholar 

  • Kaplan NM (1998b) The 6th joint national committee report (JNC-6): new guidelines for hypertension therapy from the USA. Keio J Med 47 (2): 99–105

    Article  PubMed  CAS  Google Scholar 

  • Kazda S, Garthoff B, Meyer H, Schloßmann K, Stoepel K, Towart R, Vater W, Wehinger E (1980) Pharmacology of a new calcium antagonistic compound, isobutyl methyl 1,4 dihydro-2,6-demethyl-4-(2-nitrophenyl)-3,5-pyridinecarboxylate (nisoldipine, Bay k 5552). Arzneim Forsch 30: 2144–2162

    CAS  Google Scholar 

  • Kyselovic J, Morel N, Wibo M, Godfraind T (1998a) Prevention of salt-dependent cardiac remodeling and enhanced gene expression in stroke-prone hypertensive rats by the long-acting calcium channel blocker lacidipine. J Hypertens 16 (10): 1515–1522

    Article  PubMed  CAS  Google Scholar 

  • Kyselovic J, Salomone S, Wibo M, Godfraind T (1998b) Effect of nifedipine on salt-dependent cardiac hypertrophy in stroke-prone spontaneously hypertensive rats. Br J Pharmacol 123: 320 P

    Google Scholar 

  • Leonetti G, Cuspidi C, Sampieri L, Terzoli L, Zanchetti A (1982) Comparison of cardiovascular, renal and humoral effects of acute administration of two calcium channel blockers in normotensive and hypertensive subjects. J Cardiovasc Pharmacol 4: S319 - S324

    Article  PubMed  Google Scholar 

  • Mancia G, Grassi G (1997) Antihypertensive effects of combined lisinopril and hydrochlorothiazide in elderly patients with systodiastolic or systolic hypertension: results of a multicenter trial. J Cardiovasc Pharmacol 30 (5): 548–553

    Article  PubMed  CAS  Google Scholar 

  • Mancia G, Grassi G (1998) Antihypertensive treatment: past, present and future. J Hypertens 16 (1): S1 - S7

    Article  CAS  Google Scholar 

  • Mancia G, Omboni S, Grassi G (1997a) Combination treatment in hypertension: the Vera Tran Study. Am J Hypertens 7 (Pt 2): 153S - 158S

    Google Scholar 

  • Mancia G, Sega R, Milesi C, Cesana G, Zanchetti A (1997b) Blood-pressure control in the hypertensive population Lancet 349 (9050): 454–457

    Article  PubMed  CAS  Google Scholar 

  • Mathew V, Hasdai D, Lerman A (1996) The role of endothelin in coronary atherosclerosis. Mayo Clin Proc 71: 769–777

    Article  PubMed  CAS  Google Scholar 

  • Messerli FH (1996) What, if anything, is controversial about calcium antagonists? Am J Hypertens l2 (Pt 2): 177S - 181S

    Article  Google Scholar 

  • Messerli FH, Schmieder RE, Weir MR (1997) Salt. A perpetrator of hypertensive target organ disease? Arch Intern Med 157: 2449–2452

    Article  PubMed  CAS  Google Scholar 

  • Morel N, Godfraind T (1987) Prolonged depolarization increases the pharmacological effect of dihydropyridines and their binding affinity for calcium channel of vascular smooth muscle. J Pharmacol Exp Ther 243: 711–715

    PubMed  CAS  Google Scholar 

  • Morel N, Godfraind T (1994) Selective interaction of the calcium antagonist amlodipine with calcium channels in arteries of spontaneously hypertensive rats. J Cardiovasc Pharmacol 24: 524–533

    Article  PubMed  CAS  Google Scholar 

  • Morel N, Buryi V, Feron O, Gomez JP, Christen MO, Godfraind T (1998) The action of calcium channel blockers on recombinant L-type calcium channel al subunit. Br J Pharmacol 125: 1005–1012

    Article  PubMed  CAS  Google Scholar 

  • Opie LH (1990) Clinical use of calcium channel antagonist drugs. 2nd edn. Kluwer, Boston

    Google Scholar 

  • Rossi GP et al (1999) Endothelin-1 and its mRNA in the wall layers of human arteries ex vivo. Circulation 99: 1147–1155

    PubMed  CAS  Google Scholar 

  • Schwartzkopff B, Strauer BE (1999) Squeezing tubes: a case of remodeling and regulation: coronary reserve in hypertensive heart disease. Cardiovasc Res 40: 4–8

    Article  Google Scholar 

  • Spedding M, Fraser S, Clarke B, Patmore L (1990) Factors modifying the tissue selectivity of calcium antagonists. J Neural Transm 1. 5–16

    Google Scholar 

  • Wibo M, De Roth L, Godfraind T (1988) Pharmacologic relevance of dihydropyridine binding sites in membrane from rat aorta: kinetic and equilibrium studies. Circ Res 62: 91–96

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Godfraind, T. (1999). The Coronary Selectivity of Calcium Antagonists — Focus on CHD. In: Rousseau, M.F. (eds) Nisoldipine Coat-Core. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60220-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60220-7_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66049-1

  • Online ISBN: 978-3-642-60220-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics