Skip to main content

Neuroanatomische und neuropathologische Grundlagen psychischer Störungen

  • Chapter
Book cover Psychiatrie der Gegenwart 1
  • 150 Accesses

Zusammenfassung

Das Verhältnis der Neuropathologie zu klassischen psychiatrischen Erkrankungen wie Schizophrenien, affektiven Störungen, Persönlichkeitsstörungen, Angst- und Zwangserkrankungen ist durch zahlreiche Kontroversen gekennzeichnet. Wenn man von den organischen Psychosyndromen durch lokale Hirngewebszerstörung oder von degenerativen Prozessen absieht, dann waren bisher neuropathologische Befunde bei psychiatrischen Erkrankungen entweder gar nicht zu erheben oder der Nachweis morphologischer Veränderungen war sehr schwierig und erforderte einen hohen methodischen Aufwand.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Akbarian S, Kim JJ, Potkin SG, Hetrick WP, Bunney WE, Jones EG (1996) Maldistribution of interstitial neurons in the prefrontal white matter of the brains of schizophrenics. Arch Gen Psychiatry 53: 425–436

    PubMed  CAS  Google Scholar 

  • Akil M, Lewis DA (1997) Cytoarchitecture of the entorhinal cortex in schizophrenia. Am J Psychiatry 154: 1010–1012

    PubMed  CAS  Google Scholar 

  • Aldenhoff J (1997) Überlegungen zur Psychobiologie der Depression. Nervenarzt 68 /5: 379–389

    PubMed  CAS  Google Scholar 

  • Andreasen NC, Arndt S, Swayze V 2nd et al. (1994) Thalamic abnormalities in schizophrenia visualized through magnetic resonance image averaging. Science 266: 294–298

    PubMed  CAS  Google Scholar 

  • Arnold SE, Hyman BT, Hoesen van GW, Damasio AR (1991) Some cytoarchitectural abnormalities of the entorhinal cortex in schizophrenia. Arch Gen Psychiatry 48:625–632

    PubMed  CAS  Google Scholar 

  • Bachus SE, Kleinman JE (1996) The neuropathology of schizophrenia. J Clin Psychiatry 57 (Suppl 11):72–83

    PubMed  Google Scholar 

  • Bauer J (1994) Die Alzheimer-Krankheit. Schattauer, Stuttgart

    Google Scholar 

  • Baumann B, Bornschlegl C, Krell D, Bogerts B (1997) Changes in CSF spaces differ in endogenous and neurotic depression. A planimetric CT scan study. J Affect Dis 45:179–188

    PubMed  CAS  Google Scholar 

  • Baumann B, Danos P, Krell D et al. (1999) Reduced volume of limbic system-affiliated basal ganglia in mood disorders: preliminary data from a post mortem study. J Neuropsychiatry Clin Neurosci 11:71–78

    PubMed  CAS  Google Scholar 

  • Benes FM (1995) Altered glutamatergic and GABAergic mechanisms in the cingulate cortex of the schizophrenic brain. Arch Gen Psychiatry 52:1015–1018

    PubMed  CAS  Google Scholar 

  • Benes FM, Bird ED (1987) An analysis of the arrangement of neurons in the cingulate cortex of schizophrenic patients. Arch Gen Psychiatry 44:608–616

    PubMed  CAS  Google Scholar 

  • Benes FM, McSparren J, Bird ED, SanGiovanni JP, Vincent SL (1991) Deficits in small interneurons in prefrontal and cingulate cortices of schizophrenic and schizoaffective patients. Arch Gen Psychiatry 48: 996–1001

    PubMed  CAS  Google Scholar 

  • Benowitz LI, Perrone-Bizzozero NI (1991) The expression of GAP-43 in relation to neuronal growth and plasticity: when, where, how, and why? Prog Brain Res 89:69–87

    PubMed  CAS  Google Scholar 

  • Bernstein HG, Krell D, Baumann B et al. (1998 a) Morphometric studies of the entorhinal cortex in neuropsychiatric patients and controls: clusters of heterotopically displaced lamina II neurons are not indicative of schizophrenia. Schizophr Res 33:125–132

    PubMed  CAS  Google Scholar 

  • Bernstein HG, Krell D, Baumann B et al. (1998 a) Morphometric studies of the entorhinal cortex in neuropsychiatric patients and controls: clusters of heterotopically displaced lamina II neurons are not indicative of schizophrenia. Schizophr Res 33:125–132

    Google Scholar 

  • Bernstein HG, Stanarius A, Baumann B et al. (1998 b) Nitric oxide sythase-containing neurons in the human hypothalamus: reduced number of immunoreactive cells in the paraventricular nucleus of depressive patients and schizophrenics. Neuroscience 83:867–875

    PubMed  CAS  Google Scholar 

  • Bilder RM, Wu H, Bogerts B et al. (1994) Absence of regional hemispheric volume asymmetries in first episode schizophrenia. Am J Psychiatry 151:1437–1447

    PubMed  CAS  Google Scholar 

  • Bogerts B (1991) The neuropathology of schizophrenia: Pathophysiological and neurodevelopmental implications. In Mednick SA, Cannon TD, Barr CE (eds) Fetal neural development and adult schizophrenia. Cambridge Univ Press, Cambridge, pp 153–173

    Google Scholar 

  • Bogerts B (1993) Recent advances in the neuropathology of schizophrenia. Schizophr Bull 19: 431–445

    PubMed  CAS  Google Scholar 

  • Bogerts B (1995) Hirnstrukturelle Untersuchungen an schizophrenen Patienten. In: Lieb K, Riemann D, Berger M (Hrsg) Biologisch-psychiatrische Forschung - Ein Überblick. Fischer, Stuttgart, S 123–144

    Google Scholar 

  • Bogerts B (1996) Plastizität von Hirn- struktur und -funktion als neurobiologische Grundlage der Psychotherapie. Z Klin Psychol Psychiatr Psychother 44:243–252

    PubMed  CAS  Google Scholar 

  • Bogerts B (1997) The temporolimbic system theory of positive schizophrenic symptoms. Schizophr Bull 23:423–435

    PubMed  CAS  Google Scholar 

  • Bogerts B, Lieberman J (1993) Neuropathology in the study of psychiatric disease. In: Costa e Silva ACJ, Nadelson CC (eds) International review of psychiatry, vol 1. American Psychiatric Press, Washington, pp 515–555

    Google Scholar 

  • Bogerts B, Wurthmann C, Piroth HD (1987) Hirnsubstanzdefizit mit paralimbischen und limbischem Schwerpunkt im CT Schizophrener. Nervenarzt 58 /2:97–106

    PubMed  CAS  Google Scholar 

  • Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259

    PubMed  CAS  Google Scholar 

  • Braun K (1996) Synaptische Reorganisation bei frühkindlichen Erfahrungs- und Lernprozessen: Relevanz für die Entstehung psychischer Erkrankungen. Z Klin Psychol Psychiatr Phsychother 44: 231–242

    Google Scholar 

  • Cannon TD, Mednick SA, Parnas J, Schulsinger F, Praestholm J, Vestergaard A (1993) Developmental brain abnormalities in the offspring of schizophrenic mothers, I. contribution of genetic and perinatal factors. Arch Gen Psychiatry 50:551–564

    PubMed  CAS  Google Scholar 

  • Chakos MH, Lieberman JA, Bilder RM et al. (1994) Increase in caudate nuclei volumes of first-episode schizophrenic patients taking antipsychotic drugs. Am J Psychiatry 151:1430–1436

    PubMed  CAS  Google Scholar 

  • Crow TJ (1990) Temporal lobe asymmetries as the key to the etiology of schizophrenia. Schizophr Bull 16 /3:434–443

    Google Scholar 

  • Crow TJ (1993) Schizophrenia as an anomaly of cerebral asymmetry. In: Maurer K (ed) Imaging of the brain in psychiatry and related fields. Springer, Berlin Heidelberg New York Tokyo, pp 2–17

    Google Scholar 

  • Dahlström A, Fuxe K (1964) Evidence for the existence of monoamine- containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of the brain stem neurons. Acta Physiol Scand 62 (Suppl 232):1–55

    Google Scholar 

  • Danos P, Baumann B, Bernstein HG et al. (1998) Schizophrenia and anteroventral nucleus: selective decrease of parvalbumin-immunoreactive thalamocortical projection neurons. Psychiatry Res Neuroimaging 82: 1–10

    CAS  Google Scholar 

  • Davison K, Bagley CR (1969) Schizophrenia-like psychosis associated with organic disorders of the central nervous system. A review of the literature. In: Hertington RN (ed) Current problems in neuropsychiatry. Br J Psychiatry, special publication 4:113–187

    Google Scholar 

  • Degreef G, Bogerts B, Falkai P, Greve B, Lantos G, Ashtari M, Lieberman J (1992 a) Increased prevalence of the cavum septum pellucidum in MRI scans and postmortem brains of schizophrenic patients. Psychiatry Res Neuroimaging 45:1–13

    Google Scholar 

  • Degreef G, Ashtari M, Bogerts B, Bilder RM, Jody DN, Alvir JMJ, Lieberman JA (1992 b) Volumes of ventricular system subdivisions measured from magnetic resonance images in first episode schizophrenic patients. Arch Gen Psychiatry 49:531–537

    Google Scholar 

  • DeLisi LE, Sakuma M, Tew W, Kushner M, Hoff AL, Grimson R (1997) Schizophrenia as a chronic active brain process: a study of progressive brain structural change subsequent to the onset of schizophrenia. Psychiatry Res 74 /3:129–140

    PubMed  CAS  Google Scholar 

  • Falkai P (1996) Differential diagnosis in acute psychotic episode. Int Clin Psychopharmacol 11 (Suppl 2):13–17

    PubMed  Google Scholar 

  • Falkai P, Bogerts B (1994) Brain morphology and prediction of neuroleptic treatment response in schizophrenia. In: Gaebel W, Awad AG (eds) Prediction of Neuroleptic treatment outcome in schizophrenia. Springer, Berlin Heidelberg New York Tokyo, pp 135–147

    Google Scholar 

  • Falkai P, Bogerts B (1994) Brain morphology and prediction of neuroleptic treatment response in schizophrenia. In: Gaebel W, Awad AG (eds) Prediction of Neuroleptic treatment outcome in schizophrenia. Springer, Berlin Heidelberg New York Tokyo, pp 135–147

    Google Scholar 

  • Falkai P, Bogerts B, Rozumek M (1988 a) Cell loss and volume reduction in the entorhinal cortex of schizophrenics. Biol Psychiatry 24:515–521

    Google Scholar 

  • Falkai P, Bogerts B, Roberts GW, Crow TJ (1988 b) Measurement of the alpha-cell-migration in the entorhinal region: a marker for developmental disturbances in schizophrenia? Schizophr Res 1:157–158

    Google Scholar 

  • Falkai P, Bogerts B, Klieser E, Waters U, Schlüter U, Mooren I (1993) Quantitativ-morphometrische Befunde im CT bei Neuroleptika- Non-Respondern. In: Müller HJ (Hrsg) Therapieresistenz bei Neuroleptikabehandlung. Thieme, Stuttgart, S 37–48

    Google Scholar 

  • Falkai P, Schneider T, Greve B, Klieser E, Bogerts B (1995) Reduced frontal and occipital lobe asymmetry on CT-scans of schizophrenic patiens. Its specifity and clinical significance. J Neural Transm (Gen Sect) 99: 63–77

    CAS  Google Scholar 

  • Fields DR, Nelson PG (1992) Activity dependent development of the vertebrate nervous system. In: Bradley R (ed) International review of neurobiology, vol 43. Academic Press, New York, pp 133–214

    Google Scholar 

  • Flor-Henry P (1969) Psychosis and temporal lobe epilepsy: a controlled investigation. Epilepsia 10:363–395

    PubMed  CAS  Google Scholar 

  • Frangou S, Sharma T, Sigmudsson T, Barta P, Pearlson G, Murray RM (1997) The Maudsley Family Study. 4. Normal planum temporale asymmetry in familial schizophrenia. A volumetric MRI study. Br J Psychiatry 170: 328–333

    PubMed  CAS  Google Scholar 

  • Friedman L, Lys C, Schulz SC (1992) The relationship of structural brain imaging parameters to antipsychotic treatment response: a review. J Psychiatry Neurosci 17 /2:42–54

    PubMed  CAS  Google Scholar 

  • Geddes JR, Lawrie S (1995) Obstetric complications and schizophrenia. A meta-analysis. Br J Psychiatry 167:786–793

    PubMed  CAS  Google Scholar 

  • Goldman-Rakic P (1994) Cerebral Cortical Mechanisms in Schizophrenia. Neuropsychopharmacology 10 (Suppl 3):22–27

    Google Scholar 

  • Grasby PM, Bench C (1997) Neuroimaging of mood disorders. Curr Opin Psychiatry 10: 73–78

    Google Scholar 

  • Gray JA (1982) The neuropsychology of anxiety: an enquiry into the function of the septo-hippocampal system. Oxford Univ Press, Oxford

    Google Scholar 

  • Greenwood R, Bhalla A, Gordon A, Roberts J (1983) Behavior disturbances during recovery from herpes simplex encephalitis. J Neurol Neurosurg Psychiatry 46:809–817

    PubMed  CAS  Google Scholar 

  • Hampel H, Teipel SJ, Kötter HU et al. (1997) Strukturelle Magnetresonanztomographie in der Diagnose und Erforschung der Demenz vom Alzheimer-Typ. Nervenarzt 68:365–378

    PubMed  CAS  Google Scholar 

  • Harper CG, Kril JJ, Daly J (1988) Does ‘moderate’ alcohol intake damage the brain? J Neurol Neurosurg Psychiatry 51:909–913

    PubMed  CAS  Google Scholar 

  • Harvey I, Ron MA, Du Boulay G, Wicks SW, Lewis SW, Murray RM (1993) Reduction of cortical volume in schizophrenia on magnetic resonance imaging. Psychol Med 23:591–604

    PubMed  CAS  Google Scholar 

  • Heinsen H, Gössmann E, Rüb U et al. (1996) Variability in the human entorhinal region may confound neuropsychiatric diagnoses. Acta Anat 157:226–237

    PubMed  CAS  Google Scholar 

  • Henderson AS, Henderson JH (eds) (1988) Etiology of dementias of Alzheimers type. Wiley, New York

    Google Scholar 

  • Herrmann M, Bartels C, Wallesch CW (1993) Depression in acute and chronic aphasia: symptoms, pathoanatomical-clinical correlations and functional implications. J Neurol Neurosurg Psychiatry 56: 672–678

    PubMed  CAS  Google Scholar 

  • Hess WR (1949) Das Zwischenhirn. Schwabe, Basel

    Google Scholar 

  • Heun R, Schlegel S, Graf-Morgenstern M, Tintera J, Gawehn J, Stoeter P (1997) Proton magnetic resonance spectroscopy in dementia of Alzheimer type. Int J Geriatr Psychiatry 12 /3:349–358

    PubMed  CAS  Google Scholar 

  • Hillbom E (1951) Schizophrenia-like psychoses after brain trauma. Acta Psychiatr Neurol Scand 60:36–47

    Google Scholar 

  • Hoesen GW van (1982) The parahippocampal gyrus. New observations regarding its cortical connections in the monkey. Trends Neurosci 5:345–350

    Google Scholar 

  • Holman BL, Johnson KA, Gerada B, Carvalho PA, Satlin A (1992) The scintigraphic appearance of Alzheimers disease: a prospective study using technetium-99m- HMPAO SPECT. Nucl Med 33 /2:181–185

    CAS  Google Scholar 

  • Huber G (1957) Pneumencephalographische und psychopathologische Bilder bei endogenen Psychosen. Springer, Berlin Göttingen Heidelberg

    Google Scholar 

  • Illowsky BP, Juliano DM, Bigelow LB, Weinberger DR (1988) Stability of CT scan findings in schizophrenia: results of an 8 year follow-up study. J Neurol Neurosurg Psychiatry 51:209–213

    PubMed  CAS  Google Scholar 

  • Jakob J, Beckmann H (1986) Prenatal developmental disturbances in the limbic allocortex in schizophrenics. J Neural Transmiss 65:303–326

    CAS  Google Scholar 

  • Jeste D, Lohr JB, Goodwin FK (1988) Neuroanatomical studies of major affective disorders. Br J Psychiatry 153:444–459

    PubMed  CAS  Google Scholar 

  • Johnstone EC, Crow TJ, Frith CD, Husband J, Kreel L (1976) Cerebral ventricular size and cognitive impairment in chronic schizophrenia. Lancet 2:924–926

    PubMed  CAS  Google Scholar 

  • Jones EG, Powell TPS (1970) An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain 93:793–820

    PubMed  CAS  Google Scholar 

  • Jönsson SA, Luts A, Guldberg-Kjaer N, Brun A (1997) Hippocampal pyramidal cell disarray correlates negatively to cell number: implications for the pathogenesis of schizophrenia. Eur Arch Psychiatry Clin Neurisci 247:120–127

    Google Scholar 

  • Katsetos CD, Hyde TM, Herman MM (1997) Neuropathology of the cerebellum in Schizophrenia - an Update: 1996 and future directions. Biol Psychiatry 42:213–224

    PubMed  CAS  Google Scholar 

  • Kemali D, Maj M, Galderisi S, Milici N, Salvati A (1989) Ventricle-to-brain ratio in schizophrenia: a controlled follow-up study. Biol Psychiatry 26:756–759

    PubMed  CAS  Google Scholar 

  • Keshavan MS, Bagwell WW, Haas GL, Sweeney JA, Schooler NR, Pettegrew JW (1994) Changes in caudate volume with neuroleptic treatment. Lancet 344 (8934):1434

    Google Scholar 

  • Keshavan MS, Haas GL, Kahn CE et al. (1998) Superior temporal gyrus and the course of early schizophrenia: progressive, static, or reversible? J Psychiatr Res 32:161–167

    PubMed  CAS  Google Scholar 

  • Ketter TA, George MS, Kimbrell TA, Benson BE, Post RM (1996) Func¬tional brain imaging, limbic func¬tion and affective disorders. Neuroscientist 2:55–65

    Google Scholar 

  • Kleinschmidt A, Falkai P, Huang Y, Schneider T, Furst G, Steinmetz H (1994) In vivo morphometry of planum temporale asymmetry in first-episode schizophrenia. Schizophr Res 12:9–18

    PubMed  CAS  Google Scholar 

  • Krimer LS, Herman MM, Saunders RC et al. (1997) A qualitative and quantitative analysis of the entorhinal cortex in schizophrenia. Cereb Cortex 7:732–739

    PubMed  CAS  Google Scholar 

  • Kurz A, Egensperger R, Lautenschlager N, Haupt M, Altland K, Graeber MB, Muller U (1995) Das Apolipoprotein E Gen und der Phänotyp der Alzheimer Krankheit. Z Gerontol Geriatr 28 /3:195–199

    CAS  Google Scholar 

  • Kwon JS, Shenton ME, Hirayasu Y et al. (1998) MRI study of cavum septi pellucidi in schizophrenia, affective disorder, and schizo¬typal personality disorder. Am J Psychiatry 155:509–515

    PubMed  CAS  Google Scholar 

  • Lawrie SM, Abukmeil SS, Chiswick A, Egan V, Santosh CG, Best JJ (1997) Qualitative cerebral mor¬phology in schizophrenia: a mag¬netic resonance imaging study and systematic literature review. Schizophr Res 25:155–166

    PubMed  CAS  Google Scholar 

  • Lawrie SM, Abukmeil SS (1998) Brain Abnormality in schizophre¬nia. Br J Psychiatry 172:110–120

    PubMed  CAS  Google Scholar 

  • Lesch A, Bogerts B (1984) The diencephalon in schizophrenia: Evi¬dence for reduced thickness of the periventricular grey matter. Europ Arch Psychiatry Neurol Sci 234:212–219

    CAS  Google Scholar 

  • Lewis SW (1990) Computed tomo¬graphy in schizophrenia, 15 years on. Br J Psychiatry 157 (Suppl 9):16–24

    Google Scholar 

  • Lewis SW (1995) The secondary schi¬zophrenias. In: Hirsch S, Wein¬berger DR (eds) Schizophrenia. Blackwell, Oxford, pp 324–340

    Google Scholar 

  • Lieberman J, Bogerts B, Degreef G, Ashtari M, Alvir J (1992) Qualita¬tive assessment of brain mor¬phology in acute and chronic schizophrenia. Am J Psychiatry 149:784–791

    PubMed  CAS  Google Scholar 

  • Liu X, Matochik JA, Cadet JL, London ED (1998) Smaller volume of prefrontal lobe in polysubstance abusers: a magnetic resonance imaging study. Neuropsychopharmacology 18 /4:243–252

    PubMed  CAS  Google Scholar 

  • Luts A, Jonsson SA, Guldberg-Kjaer N, Brun A (1998) Uniform ab¬normalities in the hippocampus of five chronic schizophrenic men compared with age-matched controls. Acta Psychiatr Scand 98 /1:60–64

    PubMed  CAS  Google Scholar 

  • Maier W, Schwab S (1998) Molecu¬lar genetics of schizophrenia. Curr Opin Psychiatry 11:19–25

    Google Scholar 

  • Mann K, Widmann U (1995) Zur Neurobiologie der Alkoholabhängigkeit. Fortschr Neurol Psychiatr 63:238–247

    PubMed  CAS  Google Scholar 

  • Mann K, Opitz H, Petersen D, Schroth G, Heimann H (1989) In¬tracranial CSF volumetry in alco¬holics: studies with MRI and CT. Psychiatry Res 29:277–279

    PubMed  CAS  Google Scholar 

  • Marsh L, Suddath RL, Higgins N, Weinberger DR (1994) Medial temporal lobe structures in schi¬zophrenia: relationship of size to duration of illness. Schizophr Res 11:225–238

    PubMed  CAS  Google Scholar 

  • Maurer K, Riederer P, Beckmann H (eds) (1990) Alzheimers disease. Epidemiology, neuropathology, neurochemistry, and clinics. Springer, Wien New York

    Google Scholar 

  • McCarley RW, Hsiao JK, Freedman R, Pfefferbaum A, Donchin E (1996) Neuroimaging and the cognitive neuroscience of schizophrenia. Schizophr Bull 22:703–725

    PubMed  CAS  Google Scholar 

  • McLean PD (1952) Some psychiatric implications of physiological studies on frontotemporal por¬tion of limbic system (visceral brain). Electroenceph Clin Neurophysiol 4:407–418

    Google Scholar 

  • Meshul CK, Buckman JF, Allen C, Riggan JP, Feller DJ (1996) Acti¬vation of corticostriatal pathway leads to similar morphological changes observed following haloperidol treatment. Synapse 22 /4: 350–361

    PubMed  CAS  Google Scholar 

  • Mesulam MM (1986) Patterns in be¬havioral neuroanatomy: associa¬tion areas, the limbic system, and hemispheric specialization. In: Mesulam MM (ed) Principles of behavioral neurology. Davis, Phi¬ladelphia, pp 1–70

    Google Scholar 

  • Millner R (1992) Cortico-hippocampal interplay and the representa¬tion of contexts in the brain. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Nasrallah HA, Olson SC, McCalley- Witters M, Chapman S, Jacoby CG (1986) Cerebral ventricular enlargement in schizophrenia: a preliminary follow-up study. Arch Gen Psychiatry 43:157–159

    PubMed  CAS  Google Scholar 

  • Nelson MD, Saykin AJ, Flashman LA, Riordan HJ (1998) Hippocampal volume reduction in schizophre¬nia as assessed by magentic resonance imaging. Arch Gen Psy¬chiatry 55:433–440

    CAS  Google Scholar 

  • Nieuwenhuys R (1985) Chemoarchitecture of the brain. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Os J van, Fahy A, Jones P et al. (1995) Increased intracerebral cere¬brospinal fluid spaces predict un¬employment and negative symptoms in psychotic illness - a pro¬spective study. Br J Psychiatry 166:750–758

    PubMed  Google Scholar 

  • Pakkenberg B (1990) Pronounced re¬duction of total neuron number in mediodorsal thalamic nucleus and nucleus accumbens in schizophrenics. Arch Gen Psychiatry 47:1023–1028

    PubMed  CAS  Google Scholar 

  • Palkovits M, Zaborski L (1979) Neu¬ral connections of the hypothala¬mus. In Morgane PJ (ed) Anato¬my of the hypothalamus. Dekker, New York, pp 379–509

    Google Scholar 

  • Pantel J, Schröder J, Schad LR et al. (1997) Quantitative magnetic res¬onance imaging and neuropsy¬chological functions in dementia of the Alzheimer type. Psychol Med 27:221–229

    PubMed  CAS  Google Scholar 

  • Perez MM, Trimble MR, Reider I, Murray M (1984) Epileptic psy¬chosis, a further evaluation of PSE profiles. Br J Psychiatry 146:155–163

    Google Scholar 

  • Perrone-Bizzozero NI, Sower AC, Bird ED, Benowitz LI, Ivins KJ, Neve RL (1996) Levels of the growth-associated protein GAP-43 are selectively increased in asso¬ciation cortices in schizophrenia. Proc Natl Acad Sci USA 93:14182–14187

    PubMed  CAS  Google Scholar 

  • Phillips SC, Harper CG Kril J (1987) A quantitative histological study of cerebeller vermis in alcoholic patients. Brain 110:301–314

    PubMed  Google Scholar 

  • Raadsheer FC, Hoogendijk WJ, Stam FC, Tilders FJ, Swaab DF (1994) Increased numbers of corticotropin-releasing hormone expressing neurons in the hypothalamic paraventricular nucleus of de¬pressed patients. Neuroendocrinology 60:436–444

    PubMed  CAS  Google Scholar 

  • Raz S (1993) Structural cerebral pathology in schizophrenia: re¬gional or diffuse? J Abnorm Psy¬chol 102:445–452

    CAS  Google Scholar 

  • Ross CA, Pearlson GD (1996) Schizo¬phrenia, the heteromodal associa¬tion neocortex and development: potential for a neurogenetic ap¬proach. Trends Neurosci 19 /5:171–176

    PubMed  CAS  Google Scholar 

  • Rossi A, Stratta P, Mattei P, Cupillari M, Bozzao A, Gallucci M, Casacchia M (1992) Planum temporale in schizophrenia: a magnetic resonance study. Schizophr Res 7:19–22

    PubMed  CAS  Google Scholar 

  • Roth G (1991) Neuronale Grundlagen des Lernens und des Gedächtnisses. In: Schmidt JS (Hrsg) Gedächtnis: Probleme und Perspektiven der interdisziplinären Gedächtnisforschung. Suhrkamp, Frankfurt, S 127–158

    Google Scholar 

  • Scheibel AB, Kovelman JA (1981) Disorientation of the hippocampal pyramidal cells and its processes in the schizophrenic patient. Biol Psychiatry 16:101–102

    Google Scholar 

  • Schlaepfer TE, Harris GJ, Tien AY et al. (1994) Decreased regional cortical gray matter volume in schizophrenia. Am J Psychiatry 151:842–848

    PubMed  CAS  Google Scholar 

  • Shapiro RM (1993) Regional neuropathology in schizophrenia: Where are we? Where are we going? Schizophr Res 10:187–239

    PubMed  CAS  Google Scholar 

  • Singer W (1991) Die Entwicklung kognitiver Strukturen - ein selbstreferentieller Lernprozeß. In: Schmidt JS (Hrsg) Gedächtnis: Probleme und Perspektiven der interdisziplinaren Gedächtnisforschung. Suhrkamp, Frankfurt, S 96–126

    Google Scholar 

  • Slater E, Beard AW, Glithero E (1963) The schizophrenia-like psychosis of epilepsy. Br J Psychiatry 109:95–150

    PubMed  CAS  Google Scholar 

  • Soares JC, Mann JJ (1997) The anatomy of mood disorders. Biol Psychiatry 41: 86–106

    PubMed  CAS  Google Scholar 

  • Smith GN, Flynn SW, Kopala LC, Bassett AS, Lapointe, JS, Falkai P, Honer WG (1997) A comprehensive method of assessing routine CT scans in schizophrenia. Acta Psychiatr Scand 96:395–401

    PubMed  CAS  Google Scholar 

  • Sponheim SR, Iacono WG, Beiser M (1991) Stability of ventricular size after the onset of psychosis in schizophrenia. Psychiatry Res 40 /1:21–29

    PubMed  CAS  Google Scholar 

  • Swanson LW (1983) The hippocampus and the concept of limbic system. In: Seifert W (ed) Neurobiology of the hippocampus. Academic Press, London, pp 3–19

    Google Scholar 

  • Travis MJ, Kerwin R (1997) Schizophrenia — neuroimaging. Curr Opin Psychiatry 10: 16–25

    Google Scholar 

  • Victor M, Adams RD, Collins G (1989) The Wernicke-Korsakow syndrome and related neurologic disorders due to alcoholism and malnutrition. Davis, Philadelphia

    Google Scholar 

  • Vita A, Saccetti G, Cazullo CL (1988) Brain morphology in schizophrenia: A 2-to 5-year CT scan follow- up study. Acta Psychiatr Scand 78:618–621

    PubMed  CAS  Google Scholar 

  • Waddington JL (1993) Neurodynamics of abnormalities in cerebral metabolism and structure in schizophrenia. Schizophr Bull 19:55–69

    PubMed  CAS  Google Scholar 

  • Weinberger DR (1984) Brain disease and psychiatric illness: when should a psychiatrist order a CAT scan? Am J Psychiatry 141:1521–1527

    PubMed  CAS  Google Scholar 

  • Weinberger DR (1987) Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 44:660–669

    PubMed  CAS  Google Scholar 

  • Weinberger DR, Aloia MS, Goldberg TE, Berman KF (1994) The frontal lobes and schizophrenia. J Neuropsychiatry Clin Neurosci 6:419–427

    PubMed  CAS  Google Scholar 

  • Wernicke C (1881) Lehrbuch der Gehirnkrankheiten für Arzte und Studierende, Bd 2. Fischer, Kassel, S 229–242

    Google Scholar 

  • Woods BT, Yurgelun-Todd D, Goldstein JM, Seidman LJ, Tsuang MT (1996) MRI brain abnormalities in chronic schizophrenia: one process or more? Biol Psychiatry 40:585–596

    PubMed  CAS  Google Scholar 

  • Wurthmann C, Bogerts B, Falkai P (1995) Brain morphology assessed by computed tomography in patients with geriatric depression, patients with degenerative dementia, and normal control subjects. Psychiatry Res Neuroimaging 61:103–111

    CAS  Google Scholar 

  • Zipurski RB, Marsh L, Lim KO et al. (1994) Volumetric assessment of temporal lobe structures in schizophrenia. Biol Psychiatr 35:501–516

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bogerts, B., Falkai, P. (1999). Neuroanatomische und neuropathologische Grundlagen psychischer Störungen. In: Helmchen, H., Henn, F., Lauter, H., Sartorius, N. (eds) Psychiatrie der Gegenwart 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60174-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60174-3_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64290-6

  • Online ISBN: 978-3-642-60174-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics