Skip to main content

Eigenvalue Solvers for Electromagnetic Fields in Cavities

  • Conference paper
High Performance Scientific and Engineering Computing

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 8))

Abstract

We report on a comparison of the implicitly restarted Lanczos algorithm as implemented in ARPACK and the Jacobi-Davidson algorithm for solving large sparse generalized symmetric matrix eigenvalue problems. These problems occur in the computation of a few of the lowest frequencies of standing electro-magnetic waves in cavity resonators. The computational domain is discretized by a finite element method based on edge elements to avoid spurious modes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam, St., Arbenz, P., Geusi, R.: Eigenvalue solvers for electromagnetic fields in cavities. Tech. Report 275, ETH Zürich, Computer Science Department, October 1997, (Available at URL http://www.inf.ethz.ch/publications/tr.html)

    Google Scholar 

  2. Arbenz, P., Geus, R.: Parallel solvers for large eigenvalue problems originating from Maxwell’s equations. Euro-Par ’98, Springer-Verlag, 1998, (Lecture Notes in Computer Science)

    Google Scholar 

  3. Barret, R., Berry, M., Chan, T. F., Demmel. J., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R., Romine, Ch., van der Vorst, H.: Templates for the solution of linear systems: Building blocks for iterative methods. Society for Industrial and Applied Mathematics, Philadelphia, PA, 1994, (Available from Netlib at URL http://www.netlib.org/templates/index.html)

    Google Scholar 

  4. Bespalov, A.N.: Finite element method for the eigenmode problem of a RF cavity resonator. Soviet Journal of Numerical Analysis and Mathematical Modelling 3 (1988), 163–178

    Article  MathSciNet  Google Scholar 

  5. Calvetti, D., Reichel, L., Sorensen, D.C.: An implicitely restarted Lanczos method for large symmetric eigenvalue problems. Electronic Transmissions on Numerical Analysis 2 (1994), 1–21

    MathSciNet  MATH  Google Scholar 

  6. Fokkema, D.R., Sleijpen, G.L.G., van der Vorst, H.A.: Jacobi-Davidson style QR and QZ algorithms for the partial reduction of matrix pencils. Preprint 941, revised version, Utrecht University, Department of Mathematics, Utrecht, The Netherlands, January 1997

    Google Scholar 

  7. Grimes, R., Lewis, J.G., Simon, H.: A shifted block Lanczos algorithm for solving sparse symmetric generalized eigenproblems. SIAM J. Matrix Anal. Appl. 15 (1994), 228–272

    Article  MathSciNet  MATH  Google Scholar 

  8. Kikuchi, F.: Mixed and penalty formulations for finite element analysis of an eigenvalue problem in electromagnet ism. Computer Methods in Applied Mechanics and Engineering 64 (1987), 509–521

    Article  MathSciNet  MATH  Google Scholar 

  9. Lehoucq, R. B.: Private communication, May 1998

    Google Scholar 

  10. Lehoucq, R. B., Sorensen, D. C., Yang, C.: ARPACK users’ guide: Solution of large scale eigenvalue problems by implicitely restarted Arnoldi methods. Department of Mathematical Sciences, Rice University, Houston TX, October 1997, (The software and this guide are available at URL ftp://ftp.caam.rice.edu/pub/software/ARPACK/)

    Google Scholar 

  11. Nédélec, J.C.:Mixed finite elements in IR3. Numerische Mathematik 35 (1980), 315–341

    Article  MathSciNet  MATH  Google Scholar 

  12. Paige, C.C., Saunders, M.A.: Solution of sparse indefinite systems of linear equations. SIAM J. Numer. Anal. 12 (1975), 617–629

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Arbenz, P., Geus, R. (1999). Eigenvalue Solvers for Electromagnetic Fields in Cavities. In: Bungartz, HJ., Durst, F., Zenger, C. (eds) High Performance Scientific and Engineering Computing. Lecture Notes in Computational Science and Engineering, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60155-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60155-2_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65730-9

  • Online ISBN: 978-3-642-60155-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics