Skip to main content

Partitioning Strategies in Circuit Simulation

  • Conference paper
High Performance Scientific and Engineering Computing

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 8))

  • 469 Accesses

Abstract

Partitioning strategies are commonly used in network analysis packages for simulating highly integrated circuits such as dynamic memories. These methods allow chip designers to simulate circuits consisting of millions of transistors in reasonable computation time. Using a standard benchmark example, the inverter chain, we consider different approaches used in network analysis to split the system on circuit level. We will show the connection with split numerical methods for ordinary differential equations with partitioned right-hand sides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrus, J.F.: Stability of a multi-rate method for numerical integration of ode’s. Computers Math. Applic. 25 (1993) 3–14

    Article  MathSciNet  MATH  Google Scholar 

  2. Borchardt, J., Grund, F., Horn, D.: Parallelized methods for large nonlinear and linear systems in the dynamic solution of industrial application. Surv. Math. Ind. (to appear)

    Google Scholar 

  3. Engstler, Chr., Lubich, Chr.: Multirate extrapolation methods for differential equations with different time scales. Computing 58 (1997) 173–185

    Article  MathSciNet  MATH  Google Scholar 

  4. Engstler, Chr., Lubich, Chr.: MUR8: a multirate extension of the eighth-order Dormand-Prince method. Appl. Numer. Math. 25 (1997) 185–192

    Article  MathSciNet  MATH  Google Scholar 

  5. Feldmann, U., Wever, U.A., Zheng, Q., Schultz, R., Wriedt, H.: Algorithms for modern circuit simulation. Archiv fur Elektronik und Ubertragungstechnik 46 (1992) 274–285

    Google Scholar 

  6. Gear, C.W., Wells, R.R.: Multirate linear multistep methods. BIT 24 (1984) 484–502

    Article  MathSciNet  MATH  Google Scholar 

  7. Gristede, G.D., Zukowski, C.A., Ruehli, A.E.: Measuring error propagation in waveform relaxation algorithms. IEEE Trans. Circuit Theory (to appear)

    Google Scholar 

  8. Günther, M., Feldmann, U.: CAD based electric circuit modeling in industry. Part II: Impact of circuit configurations and parameters. Surv. Math. Ind. (to appear)

    Google Scholar 

  9. Günther, M., Rentrop., P.: Multirate ROW methods and latency of electric circuits. Appl. Num. Math. 13 (1993) 83–102

    Article  MATH  Google Scholar 

  10. Günther, M., Rentrop., P.: Partitioning and multirate strategies in latent electric circuits. In: Mathematical modelling and simulation of electrical circuits and semiconductor devices. Eds.: R.E. Bank et al. Basel1, Birkhauser (1994) 33–60

    Google Scholar 

  11. Higham, D.J.: Analysis of the Enright-Kamel partitioning method for for stiff ordinary differential equations. IMA J. of Numer. Anal. 9 1-14

    Google Scholar 

  12. Ho, C.W., Ruehli, A.E., Brennan, P.A.: The modified nodal approach to network analysis. IEEE Trans. Circuits and Systems CAS-22 (1975) 505–509

    Google Scholar 

  13. Kampowsky, W., Rentrop, P., Schmidt, W.: Classification and numerical simulation of electric circuits. Surv. Math. Ind. 2 (1992) 23–65

    MathSciNet  MATH  Google Scholar 

  14. Rice, J.R.: Split Runge-Kutta methods for simultaneous equations. J. Res. Natl. Bur. Standards 64 B 151-170

    Google Scholar 

  15. Schaller, Chr.: Eine effiziente Implementierung eines Waveform-Relexations-Verfahrens auf Parallelen Rechnerarchitekturen. VDI-Verlag Diisseldorf 1998 (Fortschritt-Berichte Reihe 10: Informatik/Kommunikationstechnik Nr. 533)

    Google Scholar 

  16. Schaller, Chr.: LRZ fahrt Weltrekord bei der Simulation von Schaltungen. Computer Zeitung 4/1998 24

    Google Scholar 

  17. Skelboe, S.: Stability properties of backward differentiation multirate formulas. Appl. Num. Math. 5 (1989) 151–160

    Article  MathSciNet  MATH  Google Scholar 

  18. Steihaug, T., Wolfbrandt, A.: An attempt to avoid exact Jacobian and nonlinear equations in the numerical solution of stiff ordinary differential equations. Math. Comp. 33 (1979) 521–534

    Article  MathSciNet  MATH  Google Scholar 

  19. Strehmel, K., Weiner, R.: Partitioned adaptive Runge-Kutta methods and their stability. Numer. Math. 45 283-3002

    Google Scholar 

  20. Weiner, R., Arnold, M., Rentrop, P., Strehmel, K.: Partitioning strategies in Runge-Kutta type methods. IMA J. Num. Anal. 13 (1993) 303–319

    Article  MathSciNet  MATH  Google Scholar 

  21. Wever, U., Zheng, Q.: Parallel Transient Analysis for Circuit Simulation. Proceedings of the 29 Annual Hawaii International Conference on System Sciences 1 (1996) 442–447

    Article  Google Scholar 

  22. White, J., Sangiovanni-Vincentelli, A. L.: Relaxation Techniques for Simulation of VLSI circuits. Kluwer 1987

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Günther, M., Hoschek, M. (1999). Partitioning Strategies in Circuit Simulation. In: Bungartz, HJ., Durst, F., Zenger, C. (eds) High Performance Scientific and Engineering Computing. Lecture Notes in Computational Science and Engineering, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60155-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60155-2_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65730-9

  • Online ISBN: 978-3-642-60155-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics