Skip to main content

In Vitro Selection of Nucleic Acid Enzymes

  • Chapter
Book cover Combinatorial Chemistry in Biology

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 243))

Abstract

Among the enormous quantity and diversity of enzymes found in nature, researchers have confirmed the existence of only seven distinct classes of biological catalysts that are made of RNA rather than protein. As currently understood, the natural functions of these ribozymes are limited to phosphoester transfer and phosphoester hydrolysis reactions that occur with RNA or DNA substrates (Kruger et al. 1982; Guerrier-Takadaet al. 1983; Peebles et al. 1986; Paddy et al. 1986; Buzayan et al. 1986; Sharmeen et al. 1988; Saville and Collins 1990; Zimmerly et al. 1995). Although ribozymes are exceedingly rare and their biochemical functions are limited, they serve as essential components of the metabolic machinery of all living systems. It has been proposed that nucleic acids preceded proteins in the evolutionary history of biocatalysis, and that these primitive ribozymes catalyzed many of the reactions performed by modern protein enzymes (Gilbert 1986; Benner et al. 1989; Hirao and Ellington 1995). Over the course of 4 billion years of evolution, it appears that nature has determined that proteins are a superior format for constructing enzymes; however, the true capacity of nucleic acids for catalytic function remains to be fully defined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bartel DP, Szostak JW (1993) Isolation of new ribozymes from a large pool of random sequences. Science 261: 1411–1418

    Article  PubMed  CAS  Google Scholar 

  • Beaudry AA, Joyce GF (1992) Direct evolution of an RNA enzyme. Science 257: 635–641

    Article  PubMed  CAS  Google Scholar 

  • Benner SA, Ellington AD, Tauer A (1989) Modern metabolism as a palimpsest of the RNA world. Proc Natl Acad Sci USA 86: 7054–7058

    Article  PubMed  CAS  Google Scholar 

  • Breaker RR (1997a) In vitro selection of catalytic polynucleotides. Chem Rev 97: 371–390

    Article  PubMed  CAS  Google Scholar 

  • Breaker RR (1997b) DNA aptamers and DNA enzymes. Curr Opin Chem Biol 1: 26–31

    Article  PubMed  CAS  Google Scholar 

  • Breaker RR (1997c) DNA enzymes. Nature Biotechnol 15: 427–431

    Article  CAS  Google Scholar 

  • Breaker RR, Joyce GF (1994a) Emergence of a replicating species from an in vitro RNA evolution reaction. Proc Natl Acad Sci USA 91: 6093–6097

    Article  PubMed  CAS  Google Scholar 

  • Breaker RR, Joyce GF (1994b) A DNA enzyme that cleaves RNA. Chem Biol 1: 223–229

    Article  PubMed  CAS  Google Scholar 

  • Breaker RR, Joyce GF (1995) A DNA enzyme with Mg2tdependent RNA phosphoesterase activity. Chem Biol 2: 655–660

    Article  PubMed  CAS  Google Scholar 

  • Burmeister J, von Kiedrowski G, Ellington AD (1997) Cofactor-assisted self-cleavage in DNA libraries with a 3’-5’-phosphoramidate bond. Angew Chem Int Ed 36: 1321–1324

    Article  CAS  Google Scholar 

  • Buzayan JM, Gerlach WL, Bruening G (1986) Non-enzymatic cleavage and ligation of RNAs complementary to a plant virus satellite RNA. Nature 323: 349–353

    Article  CAS  Google Scholar 

  • Carmi N, Balkhi SR, Breaker RR (1998) Cleaving DNA with DNA. Proc Natl Acad Sci USA 95: 223–237

    Article  Google Scholar 

  • Carmi N, Shultz LA, Breaker RR (1996) In vitro selection of self-cleaving DNAs. Chem Biol 3: 1039–1046

    Article  PubMed  CAS  Google Scholar 

  • Chapman KB, Szostak JW (1995) Isolation of a ribozyme with 5’-5’ ligase activity. Chem Biol 2: 325–333

    Article  PubMed  CAS  Google Scholar 

  • Charlton J, Kirschenheuter GP, Smith D (1997a) Highly potent irreversible inhibitors of neutrophil elastase generated by selection from randomized DNA-valine phosphonate library. Biochemistry 36: 3018–3026

    Article  PubMed  CAS  Google Scholar 

  • Charlton J, Sennello J, Smith D (1997b) In vivo imaging of inflammation using an aptamer inhibitor of human neutrophil elastase. Chem Biol 4: 809–816

    Article  PubMed  CAS  Google Scholar 

  • Chowrira BM, Berzal-Herranz A, Burke JM (1993) Ionic requirements for RNA binding, cleavage, and ligation by the hairpin ribozyme. Biochemistry 32: 1088–1095

    Article  PubMed  CAS  Google Scholar 

  • Cochran AG, Schultz PG (1990) Antibody-catalyzed porphyrin metallation. Science 249:781–783. Compton J (1991) Nature 350: 91–92

    Google Scholar 

  • Conn MM, Prudent JR, Schultz PG (1996) Porphyrin metalation catalyzed by a small RNA molecule. J Am Chem Soc 118: 7012–7013

    Article  CAS  Google Scholar 

  • Couenoud B, Szostak JW (1995) A DNA metalloenzyme with DNA ligase activity. Nature 375: 611–614

    Article  Google Scholar 

  • Dahm SC, Uhlenbeck OC (1991) Role of divalent metal ions in the hammerhead RNA cleavage reaction. Biochemistry 30: 9464–9469

    Article  PubMed  CAS  Google Scholar 

  • Dai X, De Mesmaeker A, Joyce GF (1995) Cleavage of an amide bond by a ribozyme. Science 267: 237–240

    Article  PubMed  CAS  Google Scholar 

  • Dai X, De Mesmaeker A, Joyce GF (1996) Amide cleavage by a ribozyme:correction. Science 272: 18–19

    Article  PubMed  Google Scholar 

  • Eaton BE (1997) The joys of in vitro selection:chemically dressing oligonucleotides to satiate protein targets. Curr Opin Chem Biol 1: 10–16

    Article  PubMed  CAS  Google Scholar 

  • Ekland EH, Bartel DP (1996) RNA-catalysed RNA polymerization using nucleoside triphosphates. Nature 382: 373–376

    Article  PubMed  CAS  Google Scholar 

  • Ekland EH, Szostak JW, Bartel DP (1995) Structurally complex and highly active RNA ligases derived from random RNA sequences. Science 269: 364–370

    Article  PubMed  CAS  Google Scholar 

  • Faulhammer D, Famulok M (1997) Characterization and divalent metal-ion dependence of in vitro selected deoxyribozymes which cleave DNA/RNA chimeric oligonucleotides. J Mol Biol 269:188–202

    CAS  Google Scholar 

  • Frauendorf C, Jaschke A (1998) Catalysis of organic reactions by RNA. Angew Chem Int Ed 37: 1378–1381

    Article  CAS  Google Scholar 

  • Geyer CR, Sen D (1997) Evidence for the metal-cofactor independence of an RNA phosphodiestercleaving DNA enzyme. Chem Biol 4: 579–593

    Article  PubMed  CAS  Google Scholar 

  • Gilbert W (1986) The RNA world. Nature 319: 618

    Google Scholar 

  • Guatelli JC, Whitefield KM, Kwoh DY, Barringer KJ, Richman DD, Gingeras TR (1990) Isothermal, in vitro amplification of nucleic acids by a multienzyme reaction modeled after retroviral replication. Proc Natl Acad Sci USA 87: 1874–1878

    Article  PubMed  CAS  Google Scholar 

  • Guerrier-Takada C, Gardiner K, Marsh T, Pace N, Altman S (1983) The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35: 849–857

    Article  PubMed  CAS  Google Scholar 

  • Hager AJ, Szostak JW (1997) Isolation of novel ribozymes that ligate AMP-activated RNA substrates. Chem Biol 4: 607–617

    Article  PubMed  CAS  Google Scholar 

  • Hager JA, Pollard JD, Szostak JW (1996) Ribozymes: aiming at RNA replication and protein synthesis. Chem Biol 3: 717–725

    Article  PubMed  CAS  Google Scholar 

  • Hampel A, Cowan JA (1997) A unique mechanism for RNA catalysis: the role of metal cofactors in hairpin ribozyme cleavage. Chem Biol 4: 513–517

    Article  PubMed  CAS  Google Scholar 

  • Hirao I, Ellington AD (1995) Recreating the RNA world. Curr Biol 5: 1017–1022

    Article  PubMed  CAS  Google Scholar 

  • Huang F, Yarus M (1997a) 5’-RNA self-capping from guanosine diphosphate. Biochemistry 36: 6557–6563

    Google Scholar 

  • Huang F, Yarus M (1997b) Versatile 5’ phosphoryl coupling of small and large molecules to an RNA. Proc Natl Acad Sci USA 94: 8965–8969

    Article  PubMed  CAS  Google Scholar 

  • Huang F, Yarus M (1997e) A calcium-metalloribozyme with autodecapping and pyrophosphatase activities. Biochemistry 36: 14107–14119

    Article  PubMed  CAS  Google Scholar 

  • Illangasekare M, Sanchez G, Nickles T, Yarus M (1995) Aminoacyl-RNA synthesis catalyzed by an RNA. Science 267: 643–647

    Article  PubMed  CAS  Google Scholar 

  • Jayasena VK, Gold L (1997) In vitro selection of self-cleaving RNAs with a low pH optimum. Proc Nat] Acad Sci USA 94: 10612–10617

    Article  CAS  Google Scholar 

  • Jenne A, Famulok M (1998) A novel ribozyme with ester transferase activity. Chem Biol 5: 23–34

    Article  PubMed  CAS  Google Scholar 

  • Joyce GF (1992) Selective amplification techniques for optimization of ribozyme function. In: Antisense RNA and DNA, TR Cech ed., Wiley-Liss, New York, pp 353–372

    Google Scholar 

  • Kruger K, Grabowski PJ, Zaug AJ, Sands J, Gottschling DE, Cech TR (1982) Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell 31: 147–157

    Article  PubMed  CAS  Google Scholar 

  • Kuimelis RG, McLaughlin RW (1995) Hammerhead ribozyme mediated cleavage of a substrate analogue containing an internucleotidic bridging 5’-phosphorothioate: implications for the cleavage mechanism and the catalytic role of the metal cofactor. J Am Chem Soc 117: 11019–11020

    Article  CAS  Google Scholar 

  • Letsinger RL, Wu T (1995) Use of a stilbenecarboxamide bridge in stabilizing, monitoring, and photochemically altering folded conformations of oligonucleotides. J Am Chem Soc 117: 7323–7328

    Article  CAS  Google Scholar 

  • Li Y, Sen D (1996) A catalytic DNA for porphyrin metallation. Nat Struct Biol 3: 743–747

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Sen D (1998) The modus operandi of a DNA enzyme: enhancement of substrate basicity. Chem Biol 5: 1–12

    Article  PubMed  Google Scholar 

  • Lin Y, Qiu Q, Gill SC, Jayasena SD (1994) Modified RNA sequence pools for in vitro selection. Nucleic Acids Res 22: 5229–5234

    Article  PubMed  CAS  Google Scholar 

  • Lohse PA, Szostak JW (1996), Ribozyme-catalysed amino-acid transfer reactions. Nature 381: 442–444

    Article  PubMed  CAS  Google Scholar 

  • Lorsch JR, Szostak JW (1994) In vitro evolution of new ribozymes with polynucleotide kinase activity. Nature 371: 31–36

    Article  PubMed  CAS  Google Scholar 

  • Macaya RF, Waldron JA, Beutel BA, Gao H, Joesten ME, Yang M, Patel R, Bertelsen AH, Cook AF (1995) Structural and functional characterization of potent antithrombic oligonucleotides possessing both quadruplez and duplex motifs. Biochemistry 34: 4478–4492

    Article  PubMed  CAS  Google Scholar 

  • Nelson JS, Giver L, Ellington AD, Letsinger RL (1996) Incorporation of a non-nucleotide bridge into hairpin oligonucleotides capable of high-affinity binding to the REV protein of HIV-1. Biochemistry 35: 5339–5344

    Article  PubMed  CAS  Google Scholar 

  • Nesbitt S, Hegg LA, Fedor MJ (1997) An unusual pH-independent and metal-ion-independent mechanism for hairpin ribozyme catalysis. Chem Biol 4: 619–630

    Article  PubMed  CAS  Google Scholar 

  • Noller HF, Hoffarth V, Zimniak L (1992) Unusual resistance of peptidyl transferase to protein extraction procedures. Science 256: 1416–1419

    Article  PubMed  CAS  Google Scholar 

  • Osborne SE, Matsumura I, Ellington AD (1997) Aptamers as therapeutic and diagnostic reagents: problems and prospects. Curr Opin Chem Biol 1: 5–9

    Article  PubMed  CAS  Google Scholar 

  • Osborne SE, Volker S, Stevens SY, Glick KJ (1996) Design, synthesis and analysis of disulfide cross-linked DNA duplexes. J Am Chem Soc 118: 11993–12003

    Article  CAS  Google Scholar 

  • Otto S, Bertoncin F, Engberts JBFN (1996) Lewis acid catalysis of Diels-Alder reactions in water. J Am Chem Soc 118: 7702–7707

    Article  CAS  Google Scholar 

  • Otto S, Engberts JBFN (1995) Lewis acid catalysis of Diels-Alder reactions in water. Tetrahedron Lett. 36: 2645–2648

    Article  CAS  Google Scholar 

  • Pan T, Uhlenbeck OC (1992) In vitro selection of RNAs that undergo autolytic cleavage with Pb’’. Biochemistry 31: 3887–3895

    Article  PubMed  CAS  Google Scholar 

  • Peebles CL, Perlman PS, Mecklenburg KL, Petrillio ML, Tabor JH, Jarell KA, Cheng H-L (1986) A self-splicing RNA excises an intron lariat. Cell 44: 213–223

    Article  PubMed  CAS  Google Scholar 

  • Prody GA, Bakos JT, Buzayan JM, Schneider IR, Bruening G (1986) Autolytic processing of dimeric plant virus satellite RNA. Science 231: 1577–1580

    Article  PubMed  CAS  Google Scholar 

  • Prudent JR, Uno T, Schultz PG (1994) Expanding the scope of RNA catalysis. Science 264: 1924–1927

    Article  PubMed  CAS  Google Scholar 

  • Pyle AM (1993) Ribozymes: a distinct class of metalloenzymes. Science 261: 709–714.

    Article  PubMed  CAS  Google Scholar 

  • Roth A, Breaker RR (1998) An amino acid as cofactor for a catalytic polynucleotide. Proc Natl Acad Sci USA 95: 6027–6031

    Article  PubMed  CAS  Google Scholar 

  • Santoro SW, Joyce GF (1997) A general purpose RNA-cleaving DNA enzyme. Proc Natl Acad Sci USA 94: 4262–4266

    Article  PubMed  CAS  Google Scholar 

  • Sassanfar M, Szostak JW (1993) An RNA motif that binds ATP. Nature 364: 550–553

    Article  PubMed  CAS  Google Scholar 

  • Saville BJ, Collins RA (1990) A site-specific self cleavage reaction performed by a novel RNA in Neurospora Mitochondria. Cell 61: 685–696

    Article  PubMed  CAS  Google Scholar 

  • Sharmeen L, Kuo MYP, Dinter-Gottlieb G, Taylor J (1988) Antigenomic RNA of human hepatitis delta virus can undergo self-cleavage. J Virol 62: 2674–2679

    PubMed  CAS  Google Scholar 

  • Smith D, Kirschenheuter GP, Charlton J, Guidot DM, Repine JE (1995) In vitro selection of RNA-based irreversible inhibitors of human neutrophil elastase. Chem Biol 2: 741–750

    Article  PubMed  CAS  Google Scholar 

  • Suga H, Lohse PA, Szostak JW (1998) Structural and kinetic characterization of an acyl transferase ribozyme. J Am Chen Soc 120: 1151 - -1156

    Article  CAS  Google Scholar 

  • Symons RH (1992) Small catalytic RNAs. Annu Rev Biochem 61: 641–671

    Article  PubMed  CAS  Google Scholar 

  • Tang J, Breaker RR (1997a) Rational design of allosteric ribozymes. Chem Biol 4: 453–459

    Article  PubMed  CAS  Google Scholar 

  • Tang J, Breaker RR (1997b) Examination of the catalytic fitness of the hammerhead ribozyme by in vitro selection. RNA 3: 914–925

    PubMed  CAS  Google Scholar 

  • Tang J, Breaker RR (1997b) Examination of the catalytic fitness of the hammerhead ribozyme by in vitro selection. RNA 3: 914–925

    PubMed  CAS  Google Scholar 

  • Tarasow TM, Tarasow SL, Eaton BE (1997) RNA-catalysed carbon-carbon bond formation. Nature 389: 54–57

    Article  PubMed  CAS  Google Scholar 

  • Usman N, Beigelman L, McSwiggen JA (1996) Hammerhead ribozyme engineering. Curr Opin Struct Biol 1: 627–533

    Google Scholar 

  • Walsh C (1979) In: Enzymatic Reaction Mechanisms. WH Freeman, New York, pp. 199–207

    Google Scholar 

  • Wecker M, Smith D, Gold L (1996) In vitro selection of a novel catalytic RNA: characterization of a sulfur alkylation reaction and interaction with a small peptide. RNA 2: 982–994

    PubMed  CAS  Google Scholar 

  • Wiegand TW, Janssen RC, Eaton BE (1997) Selection of RNA amide synthases. Chem Biol 4: 675–683

    Article  PubMed  CAS  Google Scholar 

  • Williams KP, Bartel (1996) Hi vitro selection of Catalytic RNA. Nucleic Acids Molec Biol 10: 367–381.

    CAS  Google Scholar 

  • Williams KP, Ciafre S, Tocchini-Valentini GP (1995) Selection of novel Mgt -dependent self-cleaving ribozymes. EMBO J 14: 4551–4557

    PubMed  CAS  Google Scholar 

  • Wilson C, Szostak JW (1995) In vitro evolution of a self-alkylating ribozyme. Nature 374: 777–782

    Article  PubMed  CAS  Google Scholar 

  • Wright MC, Joyce GF (1997) Continuous in vitro evolution of catalytic function. Science 276: 614–617

    Article  PubMed  CAS  Google Scholar 

  • Yarus M (1993) How many catalytic RNAs? Ions and the Cheshire cat conjecture. EASES J 7: 31–39

    CAS  Google Scholar 

  • Zhang B, Cech TR (1997) Peptide bond formation by in vitro selected ribozymes. Nature 390: 96–100

    Article  PubMed  CAS  Google Scholar 

  • Zimmerly S, Guo H, Eskes R, Yang J, Perlman PS, Lambowitz AM (1995) A group II intron RNA is a catalytic component of a DNA endonuclease involved in intron mobility. Cell 83: 529–538

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Breaker, R.R., Kurz, M. (1999). In Vitro Selection of Nucleic Acid Enzymes. In: Famulok, M., Winnacker, EL., Wong, CH. (eds) Combinatorial Chemistry in Biology. Current Topics in Microbiology and Immunology, vol 243. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60142-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60142-2_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64274-6

  • Online ISBN: 978-3-642-60142-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics