Skip to main content

Abstract

People living in or near a kraft pulp mill often complain of the odor nuisance associated with the mill’s operations. These complaints are directly related to the production of odorous compounds during the cooking of wood chips with white liquor and subsequent points of gaseous release to the atmosphere. Even when pure sodium hydroxide is used to treat wood and straw, odors are produced. The cause of these odors is to be found in the residual sulfurcontaining protoplasm which reacts with the alkali to form mercaptans and organic sulfides during the digestion phase. It was found that the mercaptans are formed by the saponification of lignin methoxyl groups by sulfide ions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Environmental pollution control pulp and paper industry, Part 1, Air, U.S. EPA Technology Transfer Series, EPA-625/7-76-001, October 1976.

    Google Scholar 

  2. Andersson B, Lovblod R, Grennbelt P: Diffuse emissions of odorous sulfur compounds from kraft pulp mills, 1 VLB 145, Swedish Water and Air Pollution Research Laboratory, Gotenborg, 1973.

    Google Scholar 

  3. Springer AM, Courtney FE: Air pollution: a problem without boundaries. In: Industrial environmental control pulp and paper industry, 2nd Edition (Springer AM, ed) Tappi Press, Atlanta, Georgia 1993; 525–533.

    Google Scholar 

  4. Someshwar AV: Impact of burning oil as auxiliary fuel in kraft recovery furnaces upon S02 emissions. NCASI Technical Bulletin No.578, December 1989.

    Google Scholar 

  5. Dallons V: Multimedia assessment of pollution potentials of non-sulfur chemical pulping technology. EPA-600/2-79-026, January 1979.

    Google Scholar 

  6. Rydholm SA: Pulping process. John Wiley 8c Sons. Inc., New York, 1965., 452.

    Google Scholar 

  7. Ottengraf SPP: Exhaust gas purification. In:Biotechnology Vol. 8 (Microbial degradations), Schonborn W vol. ed., Rehm H-J, Reed G - series eds.,VCH, Weinheim, Germany 1986; chap. 12:425-452.

    Google Scholar 

  8. Singhal V, Singla R, Walia AS, Jain SC: Biofiltration - an innovative air pollution control technology for H2S emissions. Chem. Eng. World 1996; 31(9): 117–124.

    CAS  Google Scholar 

  9. Hirai M, Ohtake M, Soda M: Removal of kinetics of hydrogen sulfide, methanethiol, and dimethyl sulfide by peat biofilters. J. Ferment. Bioeng. 1990; 70: 334–339.

    Article  CAS  Google Scholar 

  10. Deshusses MA, Hammer G: The removal of volatile ketone mixtures from air in biofilters. Bioprocess Eng. 1993; 9: 141–146.

    Article  CAS  Google Scholar 

  11. Leson G, Wikener AM: Biofiltration: an innovative air pollution control technology for VOC emissions. J. Air Manage. Assoc. 1991; 41: 1045–1054.

    CAS  Google Scholar 

  12. Williams TQ, Miller FC: Odor control using biofilters. BioCycle 1992; 33(10) 72–77.

    CAS  Google Scholar 

  13. Shareefdeen Z, Baltzis BC, Oh Y-S, Bartha R: Biofiltration of methanol vapor. Biotechnol. Bioeng. 1993;41:512–524.

    Article  CAS  Google Scholar 

  14. Anon: Air pollution control may be reduced with biotechnology. RMT Network, Madison, WI 1991; 6(1): 5–8.

    Google Scholar 

  15. Holusha J: Using bacteria to control pollution. The New York Times 1991; March 13: C6.

    Google Scholar 

  16. Carlson DA, Leiser CP: Soil beds for the control of sewage odors. J. Water Pollut. Control Fed. 1966; 38: 829–840.

    CAS  Google Scholar 

  17. van Lith C, Leson G, Michelson R: Evaluating design options for biofilters. J. Air Waste Manage. Assoc. 1997; 47: 37–48.

    Google Scholar 

  18. Bohn H, Bohn R: Soil beds weed out air pollutants. Chem. Eng. 1988; 95(4) 73–76.

    CAS  Google Scholar 

  19. Bohn H: Soil and compost filters of malodorant gases. J. Air Pollut. Control Assoc. 1975; 25: 953–955.

    CAS  Google Scholar 

  20. Pomeroy D: Biological treatment of odorous air. J. Water Pollut. Control Fed. 1982; 54: 1541–1545.

    Google Scholar 

  21. Lee S-K, Shoda M: Biological deodorization using activated carbon fabric as a carrier of microorganisms. J. Ferment. Bioeng. 1989; 68(6) 437–442.

    Article  CAS  Google Scholar 

  22. Furusawa N, Togashi I, Hirai M, Shoda M, Kubota H: Removal of hydrogen sulfide by a biofilter with fibrous peat. J. Ferment. Technol. 1984; 62(6) 589–594.

    CAS  Google Scholar 

  23. Ottengraph SPP, Van Denoever AHC: Kinetics of organic compound removal from waste gases with a biological filter. Biotechnol. Bioeng. 1983; 25: 3089–3102.

    Article  Google Scholar 

  24. Sivela S, Sundman V: Demonstration of Thiobacillus type bacteria which utilize methyl sulfides. Arch. Microbiol. 1975; 103: 303–304.

    Article  CAS  Google Scholar 

  25. Kanagawa T, Kelly DP: Breakdown of dimethyl sulfide by mixed cultures and by Thiobacillus thioparus FEMS Microbiol. Lett. 1986; 34: 13–19.

    CAS  Google Scholar 

  26. Kanagawa T, Mikami E: Removal of methanethiol, dimethyl sulfide, dimethyl disulfide, and hydrogen sulfide from contaminated air by Thiobacillus thioparus TK-m. Appl. Environ. Microbiol. 1989; 55(3) 555–558.

    CAS  Google Scholar 

  27. Smith NA, Kelly DP: Isolation and physiological characterization of autotrophic sulfur bacteria oxidizing dimethyl disulfide as sole source of energy. J. Gen. Microbiol. 1988; 134: 1407–1417.

    CAS  Google Scholar 

  28. Smith NA, Kelly DP: Mechanism of oxidation of dimethyl disulfide by Thiobacillus thioparusstrain E6. J. Gen. Microbiol. 1988; 134: 3031–3039.

    CAS  Google Scholar 

  29. DeBont JAM, vanDijken JP, Harder W: Dimethyl sulfoxide and dimethyl sulfide as a carbon, sulfur and energy source for growth of Hyphomicrobium S. J. Gen. Microbiol. 1981; 127: 315–323.

    Article  CAS  Google Scholar 

  30. Suylen GM, Stefess GC, Kuenen JG: Chemolithotropic potential of a Hyphomicrobiumspecies capable of growth on methylated sulfur compounds. Arch. Microbiol. 1986; 146: 192–198.

    Article  CAS  Google Scholar 

  31. Suylen GM, Large PJ, vanDijken JP, Kuenen JG: Methyl mercaptan oxidase, a key enzyme in the metabolism of methylated sulfur compounds by HyphomicrobiumEG. J. Gen. Microbiol. 1987; 133: 2989–2997.

    CAS  Google Scholar 

  32. Kirchner K, Hauk G, Rehm HJ: Exhaust gas purification using immobilized monocultures (biocatalyst). Appl. Microbiol. Biotechnol. 1987; 26: 579–587.

    Article  CAS  Google Scholar 

  33. Van Langenhove H, Wuyts E, Schamp N: Elimination of hydrogen sulfide from odorous air by a wood bark biofilter. Water Res. 1986; 20: 1471–1476.

    Article  Google Scholar 

  34. Luo J, van Oostrom A: Biofilters for controlling animal rendering odor - a pilot-scale study. Pure Appl. Chem. 1997; 69(11) 2403–2410.

    Article  CAS  Google Scholar 

  35. Chou M-S, Chen W-H: Screening of biofiltering material for VOC treatment. J. Air Waste Manage. Assoc. 1997; 47(6) 674–681.

    CAS  Google Scholar 

  36. Campbell HJ, Connor MA: Practical experience with an industrial biofilter treating solvent vapor loads of varying magnitude and composition. Pure Appl. Chem. 1997; 69(11) 2411–2424.

    Article  CAS  Google Scholar 

  37. Deshusses MA, Hammer G, Dunn IJ: Behavior of biofilters for waste air treatment. 2. Experimental evaluation of dynamic model. Environ. Sci. Technol. 1995; 29: 1059–1068.

    Article  CAS  Google Scholar 

  38. Martin AM: Peat as an agent in biological degradation: peat biofilters. In: Biological degradation of waste (Martin AM, ed). Elsevier Applied Sciences, New York 1992; 341–362.

    Google Scholar 

  39. Hodge DS, Devinny JS: Biofilter treatment of ethanol vapors. Environ. Prog. 1994; 13(3) 167–173.

    Article  CAS  Google Scholar 

  40. Eisenring R: Technical fabrics as novel carrier materials for biofilters and biological trick- Hng-bed reactors. WLB, Wasser, Luft Boden 1997; 41(9) 57–61.

    CAS  Google Scholar 

  41. Govind R, Bishop DF: Overview of air biofiltration - basic technology, economics and integration with other control technologies for effective treatment of air toxics. Emerging Solutions VOC Air Toxics Control, Proc. Spec. Conf. Pittsburgh, Pa 1996; 324–350.

    Google Scholar 

  42. Deshusses MA: Biological waste air treatment in biofilters. Current Opin. Biotechnol. 1997; 8(3) 335–339.

    Article  CAS  Google Scholar 

  43. Ottengraf SPP, Meesters JPP, van den Oever AHC, Rozema HR: Biological elimination of volatile xenobiotic compounds in biofilters. Bioprocess Eng. 1986; 1: 61–69.

    Article  Google Scholar 

  44. Ottengraf SPP, Konings SPP: Emissions of microorganisms from biofilters. Bioprocess Eng. 1991; 7: 89–96.

    Google Scholar 

  45. Wada A, Shoda M, Kubota H, Kobayashi T, Katayama FY, Kuraishi H: Characteristics of H2S oxidizing bacteria inhabiting a peat biofilter. J. Ferment. Technol. 1986; 64: 161–167.

    Article  CAS  Google Scholar 

  46. Hirai M, Terasawa M, Inamura I, Fujie K, Shoda M, Kubota H: Biological removal of organosulfur compounds using peat biofilter. J. Odor Res. Eng. 1988; 19: 305–312.

    Google Scholar 

  47. Bibeau L, Kiared K, Leroux A, Brzezinski Viel G, Heitz M: Biological purification of exhaust air containing toluene vapor in a filter-bed reactor. Can. J. Chem. Eng. 1997; 75: 921–929.

    Article  CAS  Google Scholar 

  48. Deshusses M, Johnson CT, Hohenstein GA, Leson G: Treating high loads of ethyl acetate and toluene in a biofilter. Air & Waste Management Association 90th Annual Meeting & Exhibition, June 8-13,1997, Toronto, Canada pp.13.

    Google Scholar 

  49. Stewart WC, Thorn RC: High VOC loading in biofilters industrial applications. Emerging Solutions VOC Air Toxics Control, Proc. Spec. Conf. Pittsburgh; Pa 1997; 38–65.

    Google Scholar 

  50. Apel WA, Barnes JM, Barrett KB: Biofiltration of nitrogen oxides from fuel combustion gas streams. Proc. Annu. Meet-Air Waste Manage. Assoc. 1995; 88th (vol.4A): 95-TP9C.04.

    Google Scholar 

  51. Hwang Y, Matsuo T, Hanaki K, Suzuki N: Identification and quantification of sulfur and nitrogen containing odorous compounds in wastewater. Water Res. 1995; 29(2) 711–718.

    Article  CAS  Google Scholar 

  52. Mohseni M, Grant AD: Biofiltration of a-pinene and its application to the treatment of pulp and paper air emissions. Tappi Environ. Conf. Exhib. 1997; 2: 587–592.

    CAS  Google Scholar 

  53. Deshusses MA: Transient behavior of biofilters: start-up, carbon balance, and interactions between pollutants. J. Environ. Eng. 1997; 123: 563–568.

    Article  CAS  Google Scholar 

  54. Shareefdeen Z, Baltzis BC: Biofiltration of toluene vapor under steady-state and transient conditions - theory and experimental results. Chem. Eng. Sci. 1994; 49:4347–4360.

    Article  CAS  Google Scholar 

  55. Tang HM, Hwang SJ, Hwang SC: Dynamics of toluene degradation in biofilters. Haz. Waste and Haz. Mat. 1995; 12(3) 207–219.

    Article  CAS  Google Scholar 

  56. Deshusses MA, Hamer G, Dunn IJ: Behavior of biofilters for waste air biotreatment. I: Dynamic model development. Environ. Sci. Technol. 1995; 29(4) 1048–1058.

    Article  CAS  Google Scholar 

  57. Cherry RS, Thompson DN: Shift from growth to nutrient - limited maintenance kinetics during biofilter acclimation. Biotechnol. Bioeng. 1997; 56(3) 330–339.

    Article  CAS  Google Scholar 

  58. Choi DS, Webster TS, Chankg AN, Devinny JS: Quantitative structure - activity relationships for biofiltration of volatile organic compounds. In: Proc, 1996 Conf. on Biofiltration (Reynolds Jr. FE, ed.), The Reynolds Group, Tustin, CA USA 1996; 231–238.

    Google Scholar 

  59. Johnson CT, Deshusses MA: Quantitative structure - activity relationships for VOC biodegradation in biofilters. In: Proc. Fourth In-Situ and On-Site Bioremediation Symp. New Orleans, Battelle Press, Columbus, OhioApril 28 - May 1,1997; Vol. 5:175–180.

    Google Scholar 

  60. Williams TO, Boyette RA: Biofiltration for odor control at a sewage interceptor pumping station in Charlottesville, Virginia. Proc. - WEFTEC’96 Annu. Conf. Expo., 69th, Water Environment Federation, Alexandria, Va. 1996; 6: 445–449.

    Google Scholar 

  61. Allen PJ, Van Til TS: Operating Experience with a full scale biofilter at a hardwood mill. AIChE Symp. Ser. 1997; 315: 124–129.

    CAS  Google Scholar 

  62. Singleton B, Milligan D, Blanchard J: An effective sequential biofiltration design applied to control odors caused by reduced sulfur compounds at a wet well. Proc. - WEFTEC’96 Annu. Conf. Expo., 69th, Water Environment Federation, Alexandria, Va. 1996; 6: 405–411.

    Google Scholar 

  63. Yang Y, Allen ER: Biofiltration control of hydrogen sulfide design and operational parameters. J. Air Waste Manage. Assoc. 1994; 44: 863–868.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bajpai, P., Bajpai, P.K., Kondo, R. (1999). Biofiltration of Exhaust Gases. In: Biotechnology for Environmental Protection in the Pulp and Paper Industry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60136-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60136-1_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64271-5

  • Online ISBN: 978-3-642-60136-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics