Skip to main content

Evolutions- und Innovationsdynamik als Suchprozeß in komplexen adaptiven Landschaften

  • Conference paper

Zusammenfassung

Innovationsfähigkeit stellt ein Schlüsselelement des Überlebens in sich verändernden Umwelten dar. Dies gilt sowohl für Organismen, für individuelle Akteure als auch für gesellschaftliche Systeme, seien sie nun technischer, ökonomischer oder sozialer Natur. In einer Gesellschaft, die von Beschleunigung des Fortschritts und Globalisierung geprägt ist, gehört die Untersuchung von Innovationsprozessen zu den zentralen Fragestellungen ganz unterschiedlicher Wissensbereiche. In diesem Beitrag wird Evolutions- und Innovationsdynamik aus dem Blickwinkel einer geometrisch orientierten Evolutionstheorie betrachtet. Evolution wird als kollektive Suche wechselwirkender Populationen nach lokal besseren Lösungen in einem hochdimensionalen Phänotypraum beschrieben, in dem eine Fitnesslandschaft definiert ist. Im Zentrum des vorliegenden Beitrags steht die Realisierung dieses Landschaftsbildes in formalen Modellen und die Analyse von Ansätzen, die sich aus diesem Konzept für das Verständnis von Innovationsprozessen ergeben. Im ersten Teil der Arbeit vergleichen wir kontinuierliche und diskrete Modellbeschreibungen. Besonders analysieren wir den verschiedenen Merkmalskontext der Populationen, Konkurrenzprozesse zwischen diesen, mögliche Selektionskriterien und die Entstehung des Neuen im Modell. Die Vorteile kontinuierlicher Modelle, die die evolutionäre Suche in Merkmalsräumen mit veränderlichen Fitnesslandschaften beschreiben, werden herausgearbeitet. Im zweiten Teil der Arbeit werden als Beispiel der Modellierung diskrete und kontinuierliche Beschreibungen von Innovationsprozessen in der technologischen Evolution behandelt. Dabei werden technologische Trajektorien, Lebenszyklen von Produkten und Technologien, und Innovationsfolgen betrachtet.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Abernathy, W. J., Clark, K. B. (1985) Innovation: mapping the winds of creative destruction. Research Policy 14, 3–22

    Article  Google Scholar 

  2. Abernathy, W. J., Utterback, J. M. (1978) Patterns of industrial innovation. Technological Review 50(7), 41–47

    Google Scholar 

  3. Allen, P. M. (1994) Coherence, chaos and evolution in the social context. Futures 26(6), 583–597

    Article  Google Scholar 

  4. Allen, P. M. (1995) Intelligent, self-organizing models in economics and in finance. In: Goonatilake, S., Treleaven, P. (Eds.) Intelligent systems for finance and business. John Wiley & Sons, Chichester, 289–311

    Google Scholar 

  5. Andersen, E. S. (1996) Evolutionary Economics. Pinter, London New York

    Google Scholar 

  6. Anderson, P. W. (1983) Suggested model for prebiotic evolution — the use of chaos: Proceedings of the National Academy of Sciences of the United States of America — Biological Sciences 80(11), 3386–3390

    Article  ADS  Google Scholar 

  7. Asselmeyer, T., Ebeling, W., Rose, H. (1996) Smoothing representation of fitness landscapes — the genotype-phenotype map of evolution. BioSystems 39(1), 63–76

    Article  Google Scholar 

  8. Ayres, R. U. (1969) Technological forecasting and long-range planning. McGraw- Hill, New York

    Google Scholar 

  9. Bruckner, E., Ebeling, W., Scharnhorst, A. (1989) Stochastic dynamics of instabilities in evolutionary systems. System Dynamics Review 5(2), 176–191

    Article  Google Scholar 

  10. Bruckner, E., Ebeling, W., Scharnhorst, A. (1990) The application of evolution models in scientometrics. Scientometrics 18(1–2), 21–41

    Article  Google Scholar 

  11. Bruckner, E., Ebeling, W., Jiménez Montaño, M. A., Scharnhorst, A. (1996) Nonlinear stochastic effects of substitution — an evolutionary approach. Journal of Evolutionary Economics 6, 1–30

    Article  Google Scholar 

  12. Bruckner, E., Ebeling, W., Scharnhorst, A. (1998) Technologischer Wandel und Innovation — Stochastische Modelle für innovative Veränderungen in der Ökonomie. In: v. Schweitzer, F., Silverberg, G. (Hrsg.) Evolution und Selbstorganisation in der Ökonomie. Dunker & Humblot, Berlin (im Druck)

    Google Scholar 

  13. Callón, M., Law, J., Rip, A. (Eds.) (1986) Mapping the dynamics of science and technology. Macmillan Press, London

    Google Scholar 

  14. Conrad, M. (1978) Evolution of the adaptive landscape. In: Heim, R., Palm, G. (Eds.) Theoretical approaches to complex systems. Springer, Berlin Heidelberg, pp. 147–169

    Google Scholar 

  15. Conrad, M., Ebeling, W. (1992) M.V. Volkenstein, evolutionary thinking and the structure of fitness landscapes. BioSystems 27, 125–128

    Article  Google Scholar 

  16. Conté, R., Gilbert, G. N. (Eds.) (1994) Artificial societies: the computer simulation of social life. Oxford University Press, Oxford

    Google Scholar 

  17. Dosi, G. (1982) Technological paradigms and technological trajectories. Research Policy 11, 147–162

    Article  Google Scholar 

  18. Ebeling, W. und Feistel, R. (1982) Physik der Selbstorganisation und Evolution. Akademie-Verlag, Berlin

    Google Scholar 

  19. Ebeling, W., Engel, A., Esser, B., Feistel, R. (1984) Diffusion and reaction in random media and models of evolution processes. Journal of Statistical Physics 37(3–4), 369–384

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Ebeling, W., Sonntag, I. (1986) A stochastic description of evolutionary processes in underoccupied systems. Biosystems 19(2), 91–100

    Article  Google Scholar 

  21. Ebeling, W., Scharnhorst, A. (1986) Selforganization models for field mobility of physicists. Czech J Phys B 36, 43–46

    Article  ADS  Google Scholar 

  22. Ebeling, W., Engel, A., Feistel, R. (1990) Physik der Evolutionsprozesse. Akademie-Ver lag, Berlin

    MATH  Google Scholar 

  23. Ebeling, W., Jiménez Montaño, M. A., Karmeshu (1997) Dynamics of innovations in technology and science based on individual development. In: Schweitzer, F. (Ed.) Self-organization of complex structures. Gordon and Breach, Amsterdam, pp. 407–414

    Google Scholar 

  24. Ebeling, W., Karmeshu, Scharnhorst, A. (1998) Economic and technological search processes in a complex adaptive landscape. In: Kertesz, J., Kondor, I. (Eds.) Eco- nophysics. Kluwer, Dordrecht (in press)

    Google Scholar 

  25. Eigen, M. (1971) The self-organization of matter and the evolution of biological macromolecules. Naturwiss. 58, 465ff

    Article  ADS  Google Scholar 

  26. Epstein, J. M., Axtell, R. (1996) Growing artificial societies: social science from bottom up. MIT Press, Cambridge, London

    Google Scholar 

  27. Feistel, R., Ebeling, W. (1982) Models of darwin processes and evolution principles. BioSystems 15, 291–299

    Article  Google Scholar 

  28. Feistel, R., Ebeling, W. (1989) Evolution of Complex Systems. Kluwer, Dordrecht

    Google Scholar 

  29. Foerster, H. von (1985) Sicht und Einsicht. Vieweg, Braunschweig

    Google Scholar 

  30. Fogel, D. (1992) A brief history of simulated evolution, in: Proceedings of the first annual conference on evolutionary programming, pp. 1–16, Evolutionary Programming Society, San Diego

    Google Scholar 

  31. Fontana, W., Stadler, P. F., Bornberg-Bauer, E. G., Griesmacher, T., Hofacher, M., Tacker, P., Tarazona, P., Weinberger, E. D., Schuster, P. (1993) RNA-folding and combinatory landscapes. Phys. Rev. E. 47(3), 2083–2099

    Article  ADS  Google Scholar 

  32. Frenkel, A. und Shefer, D. (1997) Technological innovation and diffusion models: a review, In: Bertuglia, C. S., Lombardo, S., Nijkamp, P. (Eds.) Innovative Behaviour in Space and Time. Springer, Berlin, pp. 41–63

    Google Scholar 

  33. Gilbert, G. N. (1997) A simulation of the structure of academic science. Sociological Research Online 2(2)http://www.socresonline.org.uk/socresonline/2/2/3.html

  34. Gould, S. J. (1987) Der Daumen des Panda. Birkhäuser, Basel Boston

    Google Scholar 

  35. Haag, G., Mueller, U., Troitzsch, K. G. (Eds.) (1992) Economic evolution and demographic change. Springer, Berlin Heidelberg

    Google Scholar 

  36. Haken, H. (1973) Synergetics. An Introduction. Springer, Berlin Heidelberg

    Google Scholar 

  37. Haken, H. (1975) Cooperative phenomena in systems far from equilibrium and in nonphysical systems. Rev. Mod. Phys. 47, 67–121

    Article  MathSciNet  ADS  Google Scholar 

  38. Haken, H. (Ed.) (1977) Synergetics. A Workshop. Springer, Berlin Heidelberg

    MATH  Google Scholar 

  39. Haken, H. (1995) Principles of Brain Functioning. Springer, Berlin Heidelberg

    Google Scholar 

  40. Hannan, M. T., Freeman, J. (1989) Organizational Ecology. Harvard University Press, Cambridge London

    Google Scholar 

  41. Hawkins, J. K. (1961) Self-organizing systems. A rewiev and commentary. Proceedings of the IRE 49(1), 31–48

    MathSciNet  Google Scholar 

  42. Hegselmann, R. (1996) Cellular automata in the social sciences, In: Hegselmann, R., Mueller, U., Troitzsch, K. G. (Eds.) Modelling and simulation in the social sciences from the philosophy of science point of view. Springer, Berlin, pp. 209–233

    Google Scholar 

  43. Hofbauer, J., Sigmund, K. (1984) Evolutionstheorie und dynamische Systeme. Pa- rey, Berlin Hamburg

    MATH  Google Scholar 

  44. Jiménez Montaño, M. A., Ebeling, W. (1980) A stochastic evolutionary model of technological change. Collective Phenomena 3, 107–114

    Google Scholar 

  45. Karmeshu, Jain, V. P. (1997) Modelling innovation diffusion. In: Bertuglia, C. S., Lombardo, S., Nijkamp, P. (Eds.) Innovative behaviour in space and time. Springer, Berlin, pp. 64–74

    Google Scholar 

  46. Kauffman, S. (1995) Der Öltropfen im Wasser. Piper, München Zürich

    Google Scholar 

  47. Krugman, P. (1996) The self-organizing economy. Blackwell, Cambridge Oxford

    Google Scholar 

  48. Kuhn, T. S. (1962) The structure of scientific revolutions. University of Chicago Press, Chicago London

    Google Scholar 

  49. Laszlo, E. (1992) Evolutionäres Management. Paidia, Fulda

    Google Scholar 

  50. Mahajan, V., Peterson, P. A. (1985) Models for innovation diffusion. Sage, Beverly Hills

    MATH  Google Scholar 

  51. Mainzer, K. (1997) Thinking in complexity. 3rd ed. Springer, Berlin Heidelberg

    MATH  Google Scholar 

  52. Marchetti, C. (1982) Die magische Entwicklungskurve. Bild der Wissenschaft 19(10), 115–128

    Google Scholar 

  53. Maturana, H. R., Varela, F. J. (1980) Autopoiesis and cognition: the realization of the living. Reidel, Dordrecht

    Google Scholar 

  54. Mayr, E. (1982) The growth of biological thought. Belknap, Cambridge London

    Google Scholar 

  55. Metcalfe, J. (1989) Evolution and economic change. In: Silberston, A. (Ed.) Technology and economic progress, London, pp. 54–85

    Google Scholar 

  56. Metcalfe, J., Gibbons, M. (1989) Technology, variety and organization, In: Ro- senbloom, R. S., Burgelmann, R. A. (Eds.) Research on technological innovation, management and policy 4. JAI Press, Greenwich, Connecticut, pp. 153–193

    Google Scholar 

  57. Montroll, E. W., Shuler, K. E. (1978) Dynamics of technological evolution: random walk model for the research enterprise. Proceedings of the National Academy of Sciences USA 76(12), 6030–6034

    Article  MathSciNet  ADS  Google Scholar 

  58. Nelson, R. R., Winter, S. G. (1977) In search of useful theory of innovation. Research Policy 5, 36–76

    Article  Google Scholar 

  59. Nelson, R. R., Winter, S. G. (1982) An evolutionary theory of economic change. Belknap, Cambridge

    Google Scholar 

  60. Nicolis, G. (1995) Introduction to nonlinear science. Cambridge University Press, Cambridge

    Google Scholar 

  61. Nicolis, G., Prigogine, I. (1977) Self-organization in non-equilibrium systems. Whi- ley, New York

    Google Scholar 

  62. Nicolis, G., Prigogine, I. (1987) Die Erforschung des Komplexen. Piper, München Zürich

    MATH  Google Scholar 

  63. Peschel, M., Mende, W. (1986) The predator-prey model: do we live in a Volterra world. Akademie-Ver lag, Berlin

    MATH  Google Scholar 

  64. Prigogine, I., Sanglier, M. (Eds.) (1985) Laws of Nature and Human Conduct. G.O.R.D.E.S., Brussels

    Google Scholar 

  65. Rechenberg, I. (1994) Evolutionsstrategie 94. Fromman-Holzboog, Stuttgart Bad Cannstadt

    Google Scholar 

  66. Rosé, H. (1998) Evolutionäre Strategien und Multitome Optimierung. Dissertation, Humboldt-Universität, Berlin

    Google Scholar 

  67. Roughgarden, J. (1979) Theory of population genetics and evolutionary ecology. Macmillan, New York

    Google Scholar 

  68. Sahal, D. (1981) Patterns of technological innovations. Addison-Wesley, Reading

    Google Scholar 

  69. Sahal, D. (1985) Technological Guideposts and Innovation Avenues. Research Policy 14, 61–82

    Article  ADS  Google Scholar 

  70. Sandia National Laboratories (1998)http://www.sandia.gov/LabNews/LN10-11-96/land.htm http://www.sandia.gov/RIE/MappingScience.htm

  71. Saviotti, P. P. (1985) An approach to the measurement of technology based on the hedonic price method and related methods. Technological Forecasting and Social Change 27, 309–334

    Article  Google Scholar 

  72. Saviotti, P. P. (1996) Technological evolution, variety and the economy. Elgar, Cheltenham Brookfield

    Google Scholar 

  73. Saviotti, P. P., Bowman, A. (1984) Indicators of output of technology. In: Gibbons, M., Gummett, P., Udgaonkar, B. (Eds.) Science and technology policy in the 1980s and beyond. Longman, London, pp. 117–147

    Google Scholar 

  74. Saviotti, P. P., Metcalfe, J. S. (1984) A theoretical approach to the construction of technological output indicators. Research Policy 13, 141–151

    Article  Google Scholar 

  75. Saviotti, P. P., Metcalfe, J. S. (1991) Present development and trends in evolutionary economicses. In: Saviotti, P. P., Metcalfe, J. S. (Eds.) Evolutionary theories of economic and technological change. Harwood Academic Publishers, Chur, pp. 1–30

    Google Scholar 

  76. Saviotti, P. P., Mani, G. S. (1995) Competition, variety and technological evolution: a replicator dynamics model. Journal of Evolutionary Economics 5, pp. 369–392

    Article  Google Scholar 

  77. Schuster, P., Stadler, P. F. (1994) Landscapes: complex optimization problems and biopolymer structures. Computers Chem. 18, 295–314

    Article  MATH  Google Scholar 

  78. Schwefel, H.-P. (1995) Evolution and optimum seeking. Wiley, New York

    Google Scholar 

  79. Schweitzer, F., Silverberg, G. (Eds.) (1998) Selbstorganisation und Ökonomie. Duncker & Humblot, Berlin (im Druck)

    Google Scholar 

  80. Silverberg, G. (1988) Modelling economic dynamics and technical change: mathematical approaches to self-organisation and evolution. In: Dosi, G., Freeman, C., Nelson, R., Silverberg, G., Soete, L. (Eds.) Technical change and economic theory. Pinter, London New York, pp. 531–559

    Google Scholar 

  81. Sober, E. (1985) The nature of selection. MIT Press, Cambridge London

    Google Scholar 

  82. Small, H., Griffith, B. C. (1974) The structure of scientific literature I: identifying and graphing specialties. Science Studies 4, 17

    Article  Google Scholar 

  83. Thom, R. (1972) Stabilité structurelle et morphogenése. W. A. Benjamin, New York

    Google Scholar 

  84. Troitzsch, K. G. (1996) Simulation and structuralism. In: Hegselmann, R., Mueller, U., Troitzsch, K. G. (Eds.) Modelling and simulation in the social sciences from the philosophy of science point of view. Springer, Berlin, pp. 183–208

    Google Scholar 

  85. Tushman, M., Anderson, P. (1986) Technological discontinuities and organizational environments. Administrative Science Quarterly 31, 439–465

    Article  Google Scholar 

  86. Utterback, J. M., Abernathy, W. J. (1975) A dynamic model of process and product innovation. Omega 3(6), 639–656

    Article  Google Scholar 

  87. Vernon, R. (1966) International investment and institutional trade in the product cycle. Quarterly Journal of Economics 8, 190–207

    Article  Google Scholar 

  88. Voigt, H. M., Ebeling, W., Rechenberg, I., Schwefel, H.-P. (Eds.) (1996) Parallel problem solving from nature — PPSN IV, Int’l conf. evolutionary computation, the fourth conf. parallel problem solving from nature, Berlin, September 1996, Proceedings. Springer, Berlin

    Google Scholar 

  89. Wagner-Döbler, R., Berg, J. (1993) Mathematische Logik von 1847 bis zur Gegenwart. De Gruyter, Berlin New York

    MATH  Google Scholar 

  90. Wagner-Döbler, R. (1997) Wachstumszyklen technisch-wissenschaftlicher Kreativität. Campus, Frankfurt New York

    Google Scholar 

  91. Weidlich, W. (1991) Physics and social science — the approach of synergetics. Physics Reports 204(1), 1–163

    Article  MathSciNet  ADS  Google Scholar 

  92. Weidlich, W., Haag, G. (1983) Concepts and models in quantitative sociology. Springer, Berlin

    Google Scholar 

  93. Westhoff, F. H., Yarbrough, B. V., Yarbrough, R. M. (1996) Complexity, organization, and Stuart Kauffman’s The Origin of Order. Journal of Economic Behaviour and Organization 29, 1–25

    Article  Google Scholar 

  94. Witt, U. (Ed.) (1993) Evolutionary Economics. Elgar, Aldershot

    Google Scholar 

  95. Wright, S. (1932) The roles of mutation, inbreeding, crossbreeding and selection in evolution. Proceedings of the Sixth International Congress on Genetics 1(6), 356–366

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ebeling, W., Scharnhorst, A., Montaño, M.A.J., Karmeshu (1999). Evolutions- und Innovationsdynamik als Suchprozeß in komplexen adaptiven Landschaften. In: Mainzer, K. (eds) Komplexe Systeme und Nichtlineare Dynamik in Natur und Gesellschaft. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60063-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60063-0_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64240-1

  • Online ISBN: 978-3-642-60063-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics