A New-Type Superconducting State Locally Induced Around a Vortex in the Two-Dimensional t-J Model

  • Masao Ogata
Conference paper
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 125)


We study ground states in the two-dimensional t-J model and develop a microscopic theory for vortices in \({d_{{x^2} - {y^2}}}\)-wave superconducting state, using a variational theory within a Gutzwiller approximation. A new superconducting state is found near half-filling. This state has Cooper pairs (with finite total momentum) between the residual quasiparticles near the nodes of \({d_{{x^2} - {y^2}}}\)-wave state. Consequently there is no node in the gap function of the new state, which can be observed experimentally. For δ<δc this state is a bulk state, and for δ>δc it is also induced around vortex cores when a magnetic field is applied. This means that a vortex plays a role as a nucleation center of the new state with full gap. The induced state causes the splitting of the zero-energy peak, which gives a possible explanation for the experimental data of scanning tunneling spectroscopy.


Fermi Surface Vortex Core Superconducting State Cooper Pair Scanning Tunneling Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    For a review, see D. J. Scalapino: Phys. Rep.250, 329 (1995).ADSCrossRefGoogle Scholar
  2. [2]
    F. C. Zhang, T. M. Rice: Phys. Rev. B37, 3759 (1988).ADSCrossRefGoogle Scholar
  3. [3]
    I. Maggio-Aprile, Ch. Renner, A. Erb, E. Walker, O. Fischer: Phys. Rev. Lett.75, 2754 (1995).ADSCrossRefGoogle Scholar
  4. [4]
    Ch. Renner, B. Revaz, K. Kadowaki, I. Maggio-Aprile, O. Fischer: Phys. Rev. Lett.80, 3606 (1998).ADSCrossRefGoogle Scholar
  5. [5]
    M. Covington, M. Aprili, E. Paraoanu, L. H. Greene, F. Xu, J. Zhu, C. A. Mirkin, Phys. Rev. Lett.79, 277 (1997).ADSCrossRefGoogle Scholar
  6. [6]
    K. Krishana, N. P. Ong, Q. Li, G. D. Gu, N. Koshizuka: Science277, 83 (1997).CrossRefGoogle Scholar
  7. [7]
    Y. Wang and A. H. MacDonald: Phys. Rev. B52, R3876 (1995).ADSCrossRefGoogle Scholar
  8. [8]
    M. Ogata: J. Phys. Soc. Jpn.66, 3375 (1997).ADSCrossRefGoogle Scholar
  9. [9]
    A. Himeda, M. Ogata, Y. Tanaka, S. Kashiwaya: J. Phys. Soc. Jpn.66, 3367 (1997).ADSCrossRefGoogle Scholar
  10. [10]
    F. C Zhang, C. Gros, T. M. Rice, H. Shiba: Supercond. Sci. Technol.1, 36 (1988).ADSCrossRefGoogle Scholar
  11. [11]
    H. Yokoyama, M. Ogata: J. Phys. Soc. Jpn.65, 3615 (1996).ADSCrossRefGoogle Scholar
  12. [12]
    T. Nishio, K. Yonemitsu, H. Ebisawa: J. Phys. Soc. Jpn.66, 953 (1997).ADSCrossRefGoogle Scholar
  13. [13]
    M. Ichioka, N. Hayashi, N. Enomoto, K. Machida: Phys. Rev. B53, 15316 (1996).ADSCrossRefGoogle Scholar
  14. [14]
    R. B. Laughlin: preprint.Google Scholar
  15. [15]
    A. V. Balatsky: Phys. Rev. Lett.80, 1972 (1998).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Masao Ogata
    • 1
  1. 1.Department of Basic Science, Graduate School of Arts and SciencesUniversity of TokyoKomaba, Meguro-ku, TokyoJapan

Personalised recommendations