Advertisement

Localized to Itinerant Electronic Transitions in Perovskite-Related Structures

  • J. B. Goodenough
  • J.-S. Zhou
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 125)

Abstract

Experiments on several perovskite-related transition-metal oxides at the cross-over from localized to itinerant electronic behavior reveal strong electron coupling not only to static, but also to dynamic oxygen displacements. A discontinuous change in the mean kinetic energy of the electrons results in a first-order transition at the cross-over and a breakdown of the Brinkman-Rice strong-correlation model before long-range magnetic order is stabilized. The superconductive copper oxides appear to stabilize a distinguishable thermodynamic state below a T ≈ 300 K where a multicenter polaron gas condenses into a polaron liquid that progressively orders into mobile stripes as the temperature is lowered to Tc. It is suggested that itinerant vibronic states are formed as a result of coupling of itinerant electrons to dynamic oxygen displacements along the Cu-O bond axes in the mobile stripes. Such vibronic states would be responsible for a remarkable transfer of spectral weight to states propagating parallel to the bond axes. The transfer of spectral weight is responsible for the anisotropy of the superconductive gap and an enhancement of the thermoelectric power in the interval Tc < T < T that is uniquely associated with the high- Tc superconductive phenomenon.

Keywords

Thermoelectric Power Superconductive Phase Spectral Weight Itinerant Electron Superconductive Copper Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.D. Shannon and C.T. Prewitt, Acta Crystallogr. B25, 725 (1969)Google Scholar
  2. 2.
    R.D. Shannon and C.T. Prewitt, Acta Crystallogr. B26, 1046 (1970)CrossRefGoogle Scholar
  3. 3.
    J.B. Goodenough, J.A. Kafalas, and J.M. Longo, inPreparative Methods in Solid State Chemistry, P. Hagenmuller, ed. (Academic Press, New York, 1972) Chap. 1Google Scholar
  4. 4.
    J. Zaanen. G.A. Sawatsky, and J.W. Allen, Phys. Rev. Lett.55, 418 (1985)ADSCrossRefGoogle Scholar
  5. 5.
    J.B. Goodenough and J.S. Zhou in MRS Symp. Proc.474, (1998)Google Scholar
  6. 6.
    E.O. Wollan and W.C. Koehler, Phys. Rev.100, 545 (1955)ADSCrossRefGoogle Scholar
  7. 7.
    J.B. Goodenough, A. Wald, R.J. Arnott, and N. Menyuk, Phys. Rev.124, 373 (1961)ADSCrossRefGoogle Scholar
  8. 8.
    J. Töpfer and J.B. Goodenough, Eu. J. Solid State & Inorg. Chem.34, 467 (1997)Google Scholar
  9. 9.
    J.B. Goodenough, J. Appl. Phys.36, 2342 (1965)ADSCrossRefGoogle Scholar
  10. 10.
    J.B. Goodenough, Appl. Phys.39, 403 (1968)CrossRefGoogle Scholar
  11. 11.
    I.H,. Inoueet al, Phys. Rev. Lett.74, 2539 (1995)ADSCrossRefGoogle Scholar
  12. 12.
    J.-S. Zhou and J.B. Goodenough, Phys. Rev.B54, 13393 (1996)CrossRefGoogle Scholar
  13. 13.
    Y. Okimotoet al, Phys. Rev.B51, 9581 (1995)ADSCrossRefGoogle Scholar
  14. 14.
    J.B. Goodenough, Phys. Rev.171. 466 (1968)ADSCrossRefGoogle Scholar
  15. 15.
    A. Fujimoriet al, Phys. Rev. Lett.69, 1796 (1992)ADSCrossRefGoogle Scholar
  16. 16.
    J.B. Goodenough and J.-S. Zhou, Chem. Mater. (in press)Google Scholar
  17. 17.
    Y. Okadaet al, Phys. Rev. B48, 9677 (1993)ADSCrossRefGoogle Scholar
  18. 18.
    J.B. Goodenough, Prog. Solid State Chem.5, 145 (1971)CrossRefGoogle Scholar
  19. 19.
    K. Kumagaiet al, Phys. Rev. B48, 7636 (1993)ADSCrossRefGoogle Scholar
  20. 20.
    J.-S. Zhou, W.B. Archibald, and J.B. Goodenough, Phys. Rev. B57, R2017 (1998)ADSCrossRefGoogle Scholar
  21. 21.
    J.B. Goodenough and P.M. Raccah, J. Appl. Phys.36, 1031 (1965)ADSCrossRefGoogle Scholar
  22. 22.
    J.B. Torranceet al, Phys. Rev. B45. 8209 (1992)ADSGoogle Scholar
  23. 23.
    X. Obradorset al, Phys. Rev. B47, 12353 (1993); P.C. Cranfield, J.D. Thompson, S.W. Cheong, and L.W. Rupp, Phys. Rev. B47, 12357 (1997)CrossRefGoogle Scholar
  24. X. Obradorset al, Phys. Rev. B47, 12353 (1993); P.C. Cranfield, J.D. Thompson, S.W. Cheong, and L.W. Rupp, Phys. Rev. B47, 12357 (1997)Google Scholar
  25. 24.
    J.L. García-Muñoz, P. Lacorre, and R. Cywinski, Phys. Rev. B51, 15197 (1995); J. Rodríguez-Carvajalet al, Phys. Rev. B57, 456 (1998)CrossRefGoogle Scholar
  26. J.L. García-Muñoz, P. Lacorre, and R. Cywinski, Phys. Rev. B51, 15197 (1995); J. Rodríguez-Carvajalet al, Phys. Rev. B57, 456 (1998)ADSCrossRefGoogle Scholar
  27. 25.
    J.B. Goodenough, J. Solid State Chem.127, 126 (1996)ADSCrossRefGoogle Scholar
  28. 26.
    M. Medardeet al, Phys. Rev. Lett,80, 2397 (1998)ADSCrossRefGoogle Scholar
  29. 27.
    G.M. Zhao, K. Konder, H. Keller, and K.A. Müller, Nature381, 676 (1996)ADSCrossRefGoogle Scholar
  30. 28.
    J.-S. Zhou and J.B. Goodenough, Phys. Rev. Lett.80, 2665 (1998)ADSCrossRefGoogle Scholar
  31. 29.
    J.B. Goodenough, Ferroelectrics130, 77 (1992)CrossRefGoogle Scholar
  32. 30.
    J.-S. Zhou, H. Chen, and J.B. Goodenough, Phys. Rev. B49, 9084 (1994)ADSCrossRefGoogle Scholar
  33. 31.
    J.C. Grenieret al, Physica C202, 209 (1992)CrossRefGoogle Scholar
  34. 32.
    G.I. Bersuker and J.B. Goodenough, Physica C274, 267 (1997)ADSCrossRefGoogle Scholar
  35. 33.
    J.B. Goodenough, J.-S. Zhou, and J. Chan, Phys. Rev. B47, 5275 (1993)ADSCrossRefGoogle Scholar
  36. 34.
    G.S. Baebingeret al, Phys. Rev. Lett.77, 5427 (1996)ADSGoogle Scholar
  37. 35.
    J.B. Goodenough and J.-S. Zhou, Phys. Rev. B49, 4251 (1994); Phys. Rev. Lett.76, 3412 (1996); PhysADSGoogle Scholar
  38. 36.
    A. Bianconiet al, Phys. Rev. Lett.76, 3412 (1996); Phys. Rev. B54, 4310, 12018 (1996)ADSCrossRefGoogle Scholar
  39. A. Bianconiet al, Phys. Rev. Lett.76, 3412 (1996); Phys. Rev. B54, 4310, 12018 (1996)Google Scholar
  40. 37.
    J.M. Tranquadaet al, Nature375, 561 (1995); Phys. Rev. B54. 7489 (1996)ADSCrossRefGoogle Scholar
  41. J.M. Tranquadaet al, Nature375, 561 (1995); Phys. Rev. B54. 7489 (1996)ADSCrossRefGoogle Scholar
  42. 38.
    J.-S. Zhou and J.B. Goodenough, Phys. Rev. B56, 6288 (1997)ADSCrossRefGoogle Scholar
  43. 39.
    J.-S. Zhou and J.B. Goodenough, Phys. Rev. B51, 3104 (1995); Phys. Rev. Lett.77, 151 1190 (1996)ADSGoogle Scholar
  44. J.-S. Zhou and J.B. Goodenough, Phys. Rev. B51, 3104 (1995); Phys. Rev. Lett.77, 151 1190 (1996)ADSCrossRefGoogle Scholar
  45. 40.
    M.R. Normanet al, Nature392, 157 (1998)ADSCrossRefGoogle Scholar
  46. 41.
    P. Coleman, Nature392, 134 (1998)ADSCrossRefGoogle Scholar
  47. 42.
    D.S. Dessauet al, Phys. Rev. Lett71, 2781 (1993)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • J. B. Goodenough
    • 1
  • J.-S. Zhou
    • 1
  1. 1.Texas Materials Institute, ETC 9.102University of Texas at AustinAustinUSA

Personalised recommendations