Skip to main content

Plasmodesmata and Long-Distance Virus Movement

  • Chapter

Abstract

Long-distance movement (or systemic movement) of viruses is a term used to refer to the transport of viruses between organs of infected plants via the vascular bundles. For the vast majority of viruses, long-distance movement occurs through sieve elements (SEs). During this process, invading viruses must therefore successfully spread from initially infected cells, enter veins, move through the sieve tubes to distal organs and exit the vasculature in order to propagate in the systemically infected tissues. Insect-transmitted viruses may be deposited directly into SEs by their vectors and so enter the phloem passively in the natural situation. During movement, viruses must circumvent interactions with host factors that may result in plant resistance to movement. As viruses are obligate non-mobile parasites, however, their replication and movement within plants requires interaction with host proteins and subcellular structures such as plasmodesmata. Thus for a successful systemic invasion of the host, viruses must maintain or enhance interactions with host factors that are required for movement through plasmodesmata, while avoiding interactions with host factors that prevent it.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al-Kaff NS, Covey SN (1996) Unusual accumulation of cauliflower mosaic virus in local lesions, dark green leaf tissue, and roots of infected plants. Mol Plant-Microbe Interact 9:357–363

    CAS  Google Scholar 

  • Almon E, Horowitz M, Wang H-L, Lucas WJ, Zamski E, Wolf S (1997) Phloem-specific expression of the tobacco mosaic virus movement protein alters carbon metabolism and partitioning in transgenic potato plants. Plant Physiol 115:1599–1607

    PubMed  CAS  Google Scholar 

  • Anandalakshmi R, Pruss GJ, Ge X, Marathe R, Mallory AC, Smith TH, Vance VB (1998) A viral suppressor of gene silencing in plants. Proc Natl Acad Sci 95:13079–13084

    PubMed  CAS  Google Scholar 

  • Andrianifahanana M, Lovins K, Dute R, Sikora E, Murphy JF (1997) Pathway for phloem-dependent movement of pepper mottle potyvirus in the stem of Capsicum annuum. Phytopathology 87:892–898

    PubMed  CAS  Google Scholar 

  • Arce-Johnson P, Reimann-Philipp U, Padgett HS, Rivera-Bustamente R, Beachy RN (1997) Requirement of the movement protein for long distance spread of tobacco mosaic virus in grafted plants. Mol Plant-Microbe Interact 10:691–699

    CAS  Google Scholar 

  • Barker H (1987) Invasion of non-phloem tissue in Nicotiana clevelandii by potato leafroll luteovirus is enhanced in plants also infected with potato Y potyvirus. J Gen Viro 168:1223–1227

    Google Scholar 

  • Barker H, Harrison BD (1982) Infection of potato mesophyll protoplasts with five plant viruses. Plant Cell Rep 1:247–249

    Google Scholar 

  • Barnett A, Hammond J, Lister RM (1981) Limited infection of cereal leaf protoplasts by barley yellow dwarf virus. J Gen Viro 157:397–401

    Google Scholar 

  • Beebe DU, Evert RF (1992) Photoassimilate pathway(s) and phloem loading in the leaf of Moricandia arvensis (L.) DC. (Brassicaceae). Int J Plant Sci 153:61–77

    Google Scholar 

  • Bennett CW (1940) Relation of food translocation to movement of virus of tobacco mosaic. J Agric Res 60:361–389

    Google Scholar 

  • Bennett CW (1956) Biological relations of plant viruses. Annu Rev Plant Physiol 7:143–170

    CAS  Google Scholar 

  • Blackman LM, Boevink P, Santa Cruz S, Palukaitis P, Oparka KJ (1998) The movement protein of cucumber mosaic virus traffics into sieve elements in minor veins of Nicotiana clevelandii. Plant Cell 10:525–537

    PubMed  CAS  Google Scholar 

  • Bonnemain J (1969a) Transport du14C assimile a partir des feuilles de tomate en voie de croissance et vers celles-ci. CR Acad Sci 269:1660–1663

    Google Scholar 

  • Bonnemain J (1969b) Le phloéme interne et le phloeme inclus des cidotylédonnes, leur histogénèse et leur physiologie. Rev Gen Bot 76:5–36

    Google Scholar 

  • Bostwick DE, Dannenhoffer JM, Skaggs MI, Lister RM, Larkins BA, Thompson GA (1992) Pumpkin phloem lectin genes are specifically expressed in companion cells. Plant Cell 4:1539–1548

    PubMed  CAS  Google Scholar 

  • Bransom KL, Weiland JJ, Tsai CH, Dreher TW (1995) Coding density of the turnip yellow mosaic virus genome: roles of the overlapping coat protein and p206-readthrough coding regions. Virology 206:403–412

    PubMed  CAS  Google Scholar 

  • Brigneti G, Voinnet O, Li WX, Ji LH, Ding SW, Baulcombe DC (1998) Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana. EMBO J 17:6739–6746

    PubMed  CAS  Google Scholar 

  • Brugidou C, Holt C, Yassi MNA, Zhang S, Beachy R, Fauquet C (1995) Synthesis of an infectious fulllength cDNA clone of rice yellow mottle virus and mutagenesis of the coat protein. Virology 206:108–115

    PubMed  CAS  Google Scholar 

  • Buck KW (1996) Comparison of the replication of positive-stranded RNA viruses of plants and animals. Adv Virus Res 47:159–251

    PubMed  CAS  Google Scholar 

  • Callaway A, Liu W, Andrianov V, Stenzler L, Zhao J, Wettlaufer S, Jayakumar P, Howell SH (1996) Characterization of cauliflower mosaic virus (CaMV) resistance in virus-resistant ecotypes of Arabidopsis. Mol Plant-Microbe Interact 9:810–818

    PubMed  CAS  Google Scholar 

  • Carr RJ, Kim KS (1983) Evidence that bean golden mosaic virus invades non-phloem tissue in double infections with tobacco mosaic virus. J Gen Virol 64:2489–2492

    Google Scholar 

  • Carrington JC, Kasschau KD, Mahajan SK, Schaad MC (1996) Cell-to-cell and long-distance transport of viruses in plants. Plant Cell 8:1669–1681

    PubMed  CAS  Google Scholar 

  • Clark AM, Jacobsen KR, Bostwick DE, Dannenhoffer JM, Skaggs MI, Thompson GA (1997) Molecular characterization of a phloem-specific gene encoding the filament protein, phloem protein1 (PP1), from Cucurbita maxima. Plant J 12:49–61

    PubMed  CAS  Google Scholar 

  • Cooper B, Dodds JA (1995) Differences in the subcellular localization of tobacco mosaic virus and cucumber mosaic virus movement proteins in infected and transgenic plants. J Gen Virol 76:3217–3221

    PubMed  CAS  Google Scholar 

  • Cronin S, Verchot J, Haldeman-Cahill R, Schaad MC, Carrington JC (1995) Long-distance movement factor: a transport function of the potyvirus helper component proteinase. Plant Cell 7:549–559

    PubMed  CAS  Google Scholar 

  • D’Arcy CJ, de Zoeten GA (1979) Beet western yellows virus in phloem tissue of Thlaspi arvense. Phytopathology 69:1194–1198

    Google Scholar 

  • Dannenhoffer JM, Schulz A, Skaggs MI, Bostwick DE, Thompson GA (1997) Expression of the phloem lectin is developmentally linked to vascular differentiation in cucurbits. Planta 201:405–414

    CAS  Google Scholar 

  • Dawson WO, Schlegel DE (1973) Differential temperature treatment of plants greatly enhances multiplication rates. Virology 53:476–478

    PubMed  CAS  Google Scholar 

  • Dawson WO, Bubrick P, Grantham GI (1988) Modifications of the tobacco mosaic virus coat protein gene affecting replication, movement, and symptomology. Phytopathology 78:783–789

    CAS  Google Scholar 

  • De Jong W, Ahlquist P (1995) Host-specific alterations in viral RNA accumulation and infection spread in a brome mosaic virus isolate with an expanded host range. J Viro 169:1485–1492

    Google Scholar 

  • Demler SA, de Zoeten GA, Adam G, Harris KF (1996) Pea enation mosaic enamovirus: Properties and aphid transmission. In: Harrison BD, Murant AF (eds,) The plant viruses, vol5: Polyhedral virions and bipartite RNA genomes. Plenum Press, New York, pp 303–344

    Google Scholar 

  • Deom CM, He XZ, Beachy RN, Weissinger AK (1994) Influence of heterologous tobamovirus movement protein and chimeric-movement protein genes on cell-to-cell and long-distance movement. Virology 205:198–209

    PubMed  CAS  Google Scholar 

  • Deom CM, Quan S, He XZ (1997) Replicase proteins as determinants of phloem-dependent long-distance movement of tobamoviruses in tobacco. Protoplasma 199:1–8

    CAS  Google Scholar 

  • Derrick PM, Barker H (1992) The restricted distribution of potato leafroll luteovirus antigen in potato plants with transgenic resistance resembles that in clones with one type of host gene-mediated resistance. Ann Appl Biol 120:451–457

    Google Scholar 

  • Derrick PM, Barker H (1997) Short and long distance spread of potato leafroll luteovirus: effects of host genes and transgenes conferring resistance to virus accumulation in potato. J Gen Viro 178:243–251

    Google Scholar 

  • Derrick PM, Barker H, Oparka KJ (1992) Increase in plasmodesmatal permeability during cell-to-cell spread of tobacco rattle virus from individually inoculated cells. Plant Cell 4:1405–1412

    PubMed  Google Scholar 

  • Derrick PM, Carter SA, Nelson RS (1997) Mutation of the126–/183-kDa proteins of tobacco mosaic tobamovirus: the relationship of phloem-dependent accumulation with viral protein accumulation. Mol Plant-Microbe Interact 10:589–596

    CAS  Google Scholar 

  • de Zoeten GA, Gaard G (1983) Mechanisms underlying systemic invasion of pea plants by pea enation mosaic virus. Intervirology 19:85–94

    PubMed  Google Scholar 

  • Ding B (1997) Cell-to-cell transport of macromolecules through plasmodesmata: a novel signalling pathway in plants. Trends Cell Biol 7:5–9

    PubMed  CAS  Google Scholar 

  • Ding B, Lucas WJ (1996) Secondary plasmodesmata: biogenesis, special functions and evolution. In: Smallwood M, Knox P, Bowles D (eds) Membranes: specialized functions in plants. BIOS Scientific Publishers, Oxford, pp 489–506

    Google Scholar 

  • Ding B, Parthasarathy MV, Niklas K, Turgeon R (1988) A morphometric analysis of the phloem-unloading pathway in developing tobacco leaves. Planta 176:307–318

    Google Scholar 

  • Ding B, Haudenshield JS, Hull RJ, Wolf S, Beachy RN, Lucas WJ (1992a) Secondary plasmodesmata are specific sites of localization of the tobacco mosaic virus movement protein in transgenic tobacco plants. Plant Cell 4:915–928

    PubMed  CAS  Google Scholar 

  • Ding B, Turgeon R, Parthasarathy MV (1992b) Substructure of freeze-substituted plasmodesmata. Protoplasma 169:28–41

    Google Scholar 

  • Ding B, Haudenshield JS, Willmitzer L, Lucas WJ (1993) Correlation between arrested secondary plasmodesmal development and onset of accelerated leaf senescence in yeast acid invertase transgenic tobacco plants. Plant J 4:179–189

    PubMed  CAS  Google Scholar 

  • Ding B, Li Q, Nguyen L, Palukaitis P, Lucas WJ (1995) Cucumber mosaic virus3a protein potentiates cell-to-cell trafficking of CMV RNA in tobacco plants. Virology 207:345–353

    PubMed  CAS  Google Scholar 

  • Ding B, Kwon M-O, Warnberg L (1996) Evidence that actin filaments are involved in controlling the permeability of plasmodesmata in tobacco mesophyll. Plant J 10:157–164

    Google Scholar 

  • Ding SW, Li WX, Symons RH (1995) A novel naturally occurring hybrid gene encoded by a plant RNA virus facilitates long distance virus movement. EMBO J 14:5762–5772

    PubMed  CAS  Google Scholar 

  • Ding XS, Shintaku MH, Arnold SA, Nelson RS (1995) Accumulation of mild and severe strains of tobacco mosaic virus in minor veins of tobacco. Mol Plant-Microbe Interact 8:32–40

    CAS  Google Scholar 

  • Ding XS, Shintaku MH, Carter SA, Nelson RS (1996) Invasion of minor veins of tobacco leaves inoculated with tobacco mosaic virus mutants defective in phloem-dependent movement. Proc Natl Acad Sci 93:11155–11160

    PubMed  CAS  Google Scholar 

  • Ding XS, Carter SA, Nelson RS (1998) Tobamovirus and potyvirus accumulation in minor veins of inoculated leaves from representatives of the Solanaceae and Fabaceae. Plant Physiol 116:125–136

    CAS  Google Scholar 

  • Dolja VV, Haldeman R, Robertson NL, Dougherty WG, Carrington JC (1994) Distinct functions of capsid protein in assembly and movement of tobacco etch potyvirus in plants. EMBO J 13:1482–1491

    PubMed  CAS  Google Scholar 

  • Dolja VV, Haldeman-Cahill R, Montgomery AE, Vandenbosch KA, Carrington JC (1995) Capsid protein determinants involved in cell-to-cell and long distance movement of tobacco etch potyvirus. Virology 206:1007–1016

    PubMed  CAS  Google Scholar 

  • Dorokhov YL, Alexandrova NM, Miroshnichenko NA, Atabekov JG (1984) Stimulation by aurintricarboxylic acid of tobacco mosaic virus-specific RNA synthesis and production of informosome-like infection-specific ribonucleoprotein. Virology 135:395–405

    PubMed  CAS  Google Scholar 

  • Dufour O, Palloix A, Selassie KG, Pochard E, Marchoux G (1989) The distribution of cucumber mosaic virus in resistant and susceptible plants of pepper. Can J Bot 67:655–660

    Google Scholar 

  • Edwards MC, Gonsalves D, Provvidenti R (1983) Genetic analysis of cucumber mosaic virus in relation to host resistance: location of determinants for pathogenicity to certain legumes and Lactuca saligno. Phytopathology 73:269–273

    Google Scholar 

  • Esau K (1968) Viruses in plant hosts. Form, distribution, and pathologic effects. The University of Wisconsin Press, Madison, Wisconsin

    Google Scholar 

  • Esau K (1977) Anatomy of Seed Plants. In: Esau K (ed) John Wiley, New York, pp 321–332

    Google Scholar 

  • Esau K, Hoefert LL (1971) Cytology of beet yellows virus infection in Tetragonia III. Conformations of virus in infected cells. Protoplasma 73:51–65

    PubMed  CAS  Google Scholar 

  • Evert RF, Mierzwa R (1986) Pathway(s) of assimilate movement from mesophyll cells to sieve tubes in the Beta vulgaris leaf. In: Cronshaw J, Lucas WJ, Giaquinta RT (eds) Phloem transport. Alan Liss, New York, pp 419–432

    Google Scholar 

  • Falk B, Morris T, Duffus J (1979) Unstable infectivity and sedimentable ds-RNA associated with lettuce speckles mottle virus. Virology 96:239–248

    PubMed  CAS  Google Scholar 

  • Fenczik CA, Padgett HS, Holt CA, Casper SJ, Beachy RN (1995) Mutational analysis of the movement protein of odontoglossum ringspot virus to identify a host-range determinant. Mol Plant-Microbe Interact 8:666–673

    PubMed  CAS  Google Scholar 

  • Ferguson A, Matthews REF (1993) Mosaic disease induced by turnip yellow mosaic Tymovirus. Biochimie 75:555–559

    PubMed  CAS  Google Scholar 

  • Fisher DG (1986) Ultrastructure, plasmodesmatal frequency and solute concentration in green areas of variegated Coleus blumei Benth. leaves. Planta 169:141–152

    Google Scholar 

  • Fisher DG, Evert RF (1982) Studies on the leaf of Amaranthus retroflexus(Amaranthaceae): ultrastructure, plasmodesmatal frequency, and solute concentration in relation to phloem loading. Planta 155:377–387

    CAS  Google Scholar 

  • Fry PR, Matthews REF (1963) Timing of some early events following inoculation with tobacco mosaic virus. Virology 19:461–469

    PubMed  CAS  Google Scholar 

  • Fujiwara T, Giesman-Cookmeyer D, Ding B, Lommel SA, Lucas WJ (1993) Cell-to-cell trafficking of macromolecules through plasmodesmata potentiated by the red clover necrotic mosaic virus movement protein. Plant Cell 5:1783–1794

    PubMed  CAS  Google Scholar 

  • Gal-On A, Kaplan I, Roossinck MJ, Palukaitis P (1994) The kinetics of infection of zucchini squash by cucumber mosaic virus indicate a function for RNA1 in virus movement. Virology 205:280–289

    PubMed  CAS  Google Scholar 

  • Geiger DR, Giaquinta RT, Sovonick SA, Fellows RJ (1973) Solute distribution in sugar beet leaves in relation to phloem loading and translocation. Plant Physiol 52:585–589

    PubMed  CAS  Google Scholar 

  • Gera A, Deom CM, Donson J, Shaw JJ, Lewandowski DJ, Dawson WO (1995) Tobacco mosaic tobamovirus does not require concomitant synthesis of movement protein during vascular transport. Mol Plant-Microbe Interact 8:784–787

    CAS  Google Scholar 

  • Ghoshroy S, Lartey R, Sheng J, Citovsky V (1997) Transport of proteins and nucleic acids through plasmodesmata. Annu Rev Plant Physiol Plant Mol Biol 48:27–50

    PubMed  CAS  Google Scholar 

  • Gilbertson RL, Lucas WJ (1996) How do viruses traffic on the ‘vascular highway’? Trends Plant Sci 1:260–267

    Google Scholar 

  • Golinowski W, Tomenius K, Oxelfelt P (1987) Ultrastructural studies on potato phloem cells infected with potato leaf roll virus-comparison of two potato varieties. Acta Agric Scand 37:3–19

    Google Scholar 

  • Goodrick BJ, Kuhn CW, Hussey RS (1991) Restricted systemic movement of cowpea chlorotic mottle virus in soybean with nonnecrotic resistance. Phytopathology 81:1426–1431

    Google Scholar 

  • Grusak MA, Beebe DU, Turgeon R (1996) Phloem loading. In: Zamski E, Schaffer AA (eds) Photoassimilate distribution in plants and crops. Marcel Dekker, New York, pp 209–227

    Google Scholar 

  • Hamilton WDO, Baulcombe DC (1989) Infectious RNA produced by in vitro transcription of a full-length tobacco rattle virus RNA-1 cDNA. J Gen Viro 170:963–968

    Google Scholar 

  • Hatta T, Matthews REF (1974) The sequence of early cytological changes in Chinese cabbage leaf cells following systemic infection with turnip yellow mosaic virus. Virology 59:383–396

    PubMed  CAS  Google Scholar 

  • Hayward HE (1938) The structure of economic plants. Macmillan, New York

    Google Scholar 

  • Heaton LA, Lee TC, Wei N, Morris TJ (1991) Point mutations in the turnip crinkle virus capsid protein affect the symptoms expressed by Nicotiana benthamiana. Virology 183:143–150

    PubMed  CAS  Google Scholar 

  • Hickey LJ (1979) A revised classification of the architecture of dicotyledonous leaves. In: Metcalfe CR, Chalk L (eds) Anatomy of the dicotyledons. Oxford University Press, New York, pp 25–39

    Google Scholar 

  • Hilf ME, Dawson WO (1993) The tobamovirus capsid protein functions as a host-specific determinant of long-distance movement. Virology 193:106–114

    PubMed  CAS  Google Scholar 

  • Hoefert LL, Pinto RL, Fail GL (1988) Ultrastructural effects of lettuce infectious yellows virus in Lactuca sativaL. J Ultrastruct Mol Struct Res 98:243–253

    Google Scholar 

  • Holmes FO (1930) Local and systemic increase of tobacco mosaic virus. Am J Bot 17:789–805

    Google Scholar 

  • Holmes FO (1934) A masked strain of tobacco mosaic virus. Phytopathology 24:845–873

    Google Scholar 

  • Holmes FO (1955) Additive resistances to specific viral diseases in plants. Ann Appl Biol 42:129–139

    Google Scholar 

  • Horner HT, Lersten NR, Wirth CL (1994) Quantitative survey of sieve tube distribution in foliar terminal veins often dicot species. Am J Bot 81:1267–1274

    Google Scholar 

  • Horns T, Jeske H (1991) Localization of abutilon mosaic virus (AbMV) DNA within leaf tissue by in situ hybridization. Virology 181:580–588

    PubMed  CAS  Google Scholar 

  • Ingham DJ, Pascal E, Lazarowitz SG (1995) Both bipartite geminivirus movement proteins define viral host range, but only BL1 determines viral pathogenicity. Virology 207:191–204

    PubMed  CAS  Google Scholar 

  • Ishiwatari Y, Fujiwara T, McFarland KC, Nemoto K, Hayashi H, Chino M, Lucas WJ (1998) Rice phloem thioredoxin h has the capacity to mediate its own cell-to-cell transport. Planta 205:12–22

    PubMed  CAS  Google Scholar 

  • Itaya A, Hickman H, Bao Y, Nelson R, Ding B (1997) Cell-to-cell trafficking of cucumber mosaic virus movement protein: green fluorescent protein fusion produced by biolistic gene bombardment in tobacco. Plant J 12:1223–1230

    CAS  Google Scholar 

  • Jorgensen RA, Atkinson RG, Forster RLS, Lucas WJ (1998) A RNA-based superhighway in plants. Science 279:1486–1487

    PubMed  CAS  Google Scholar 

  • Kasschau KD, Carrington JC (1998) A counterdefensive strategy of plant viruses: suppression of posttranscriptional gene silencing. Cell 95:461–470

    PubMed  CAS  Google Scholar 

  • Kempers R, Ammerlaan A, van Bel AJE (1998) Symplasmic constriction and ultrastructural features of the sieve element/companion cell complex in the transport phloem of apoplasmically and symplasmically phloem-loading species. Plant Physio1 116:271–278

    Google Scholar 

  • Knoblauch M, van Bel AJE (1998) Sieve tubes in action. Plant Cell 10:35–50

    CAS  Google Scholar 

  • Kubo S, Takanami Y (1979) Infection of tobacco mesophyll protoplasts with tobacco necrotic dwarf virus, a phloem-limited virus. J Gen Viro 142:387–398

    Google Scholar 

  • Kühn C, Francheschi VR, Schulz A, Lemoine R, Frommer WB (1997) Macromolecular trafficking indicated by localization and turnover of sucrose transporters in enucleate sieve elements. Science 275:1298–1300

    PubMed  Google Scholar 

  • Kuhn CW, Wyatt SD, Brantley BB (1981) Genetic control of symptoms, movement, and virus accumulation in cowpea plants infected with cowpea chlorotic mottle virus. Phytopathology 71:1310–1315

    Google Scholar 

  • Lakshman DK, Gonsalves D (1985) Genetic analyses of two large-lesion isolates of cucumber mosaic virus. Phytopathology 75:758–762

    Google Scholar 

  • Lauber E, Guilley H, Tamada T, Richards KE, Jonard G (1998) Vascular movement of beet necrotic yellow vein virus in Beta macrocarpa is probably dependent on an RNA3 sequence domain rather than a gene product. J Gen Viro 179:385–393

    Google Scholar 

  • Law MD, Moyer JW, Payne GA (1989) Effect of host resistance on pathogenesis of maize dwarf mosaic virus. Phytopathology 79:757–761

    Google Scholar 

  • Lei JD, Agrios GN (1986) Mechanisms of resistance in corn to maize dwarf mosaic virus. Phytopathology 76:1034–1040

    Google Scholar 

  • Leisner SM, Turgeon R (1993) Movement of virus and photoassimilate in the phloem: a comparative analysis. BioEssays 15:741–748

    CAS  Google Scholar 

  • Leisner SM, Turgeon R, Howell SH (1992) Long-distance movement of cauliflower mosaic virus in infected turnip plants. Mol Plant-Microbe Interact 5:41–47

    Google Scholar 

  • Leisner SM, Turgeon R, Howell SH (1993) Effects of host plant development and genetic determinants on the long-distance movement of cauliflower mosaic virus in Arabidopsis. Plant Cell 5:191–202

    PubMed  CAS  Google Scholar 

  • Lewandowski DJ, Dawson WO (1993) A single amino acid change in tobacco mosaic virus replicase prevents symptom production. Mol Plant-Microbe Interact 6:157–160

    CAS  Google Scholar 

  • Lucas WJ (1995) Plasmodesmata: intercellular channels for macromolecular transport in plants. Curr Opin Cell Bio 17:673–680

    Google Scholar 

  • Lucas WJ, Ding B, van der Schoot C (1993a) Plasmodesmata and the supracellular nature of plants. New Phytol 125:435–476

    Google Scholar 

  • Lucas WJ, Olesincki A, Hull RJ, Haudenshield JS, Deom CM, Beachy RN, Wolf S (1993b) Influence of the tobacco mosaic virus30-kDa movement protein on carbon metabolism and photosynthate partitioning in transgenic tobacco plants. Planta 190:88–96

    CAS  Google Scholar 

  • Lucy AP, Boulton MI, Davies JW, Maule AJ (1996) Tissue specificity of Zea mays infection by maize streak virus. Mol Plant-Microbe Interact 9:22–31

    CAS  Google Scholar 

  • Madore MA, Oross JW, Lucas WJ (1986) Symplastic transport in Ipomea tricolor source leaves. Plant Physio 182:432–442

    Google Scholar 

  • Más P, Pallás V (1996) Long-distance movement of cherry leaf roll virus in infected tobacco plants. J Gen Virol 77:531–540

    PubMed  Google Scholar 

  • Matthews REF (1991) Plant virology. Academic Press, San Diego

    Google Scholar 

  • Mauseth JD (1988) Plant anatomy, Benjamin/Cummings, Menlo Park, California

    Google Scholar 

  • McCauley MM, Evert RF (1989) Minor veins of the potato (Solanum tuberosum L.)leaf ultrastructure and plasmodesmatal frequency. Bot Gaz 150:351–368

    Google Scholar 

  • McLean BG, Hempel FD, Zambryski PC (1997) Plant intercellular communications via plasmodesmata. Plant Cell 9:1043–1054

    PubMed  CAS  Google Scholar 

  • Melcher U (1989) Symptoms of cauliflower mosaic virus infection in Arabidopsis thaliana and turnip. Bot Gaz 150:139–147

    Google Scholar 

  • Mezitt LA, Lucas WJ (1996) Plasmodesmal cell-to-cell transport of proteins and nucleic acids. Plant Mol Bio l32:251–273

    PubMed  CAS  Google Scholar 

  • Mise K, Ahlquist P (1995) Host-specificity restriction by bromovirus cell-to-cell movement protein occurs after initial cell-to-cell spread of infection in nonhost plants. Virology 206:276–286

    PubMed  CAS  Google Scholar 

  • Murant A, Roberts I, Goold R (1996) Carrot mottle-a persistent aphid-borne virus with unusual properties and particles. J Gen Virol 4:329–341

    Google Scholar 

  • Murillo I, Cavallarin L, San Segundo B (1997) The maize pathogenesis-related PRms protein localizes to plasmodesmata in maize radicles. Plant Cell 9:145–156

    PubMed  CAS  Google Scholar 

  • Murphy JF, Kyle MM (1995) Alleviation of restricted systemic spread of pepper mottle potyvirus in Capsicum annuum cv. Avelar by coinfection with a cucumovirus. Phytopathology 85:561–566

    Google Scholar 

  • Nelson RS, van Bel AJE (1998) The mystery of virus trafficking into, through and out of the vascular tissue. Prog Bot 59:476–533

    Google Scholar 

  • Nelson RS, Li G, Hodgson RAJ, Beachy RN, Shintaku MH (1993) Impeded phloem-dependent accumulation of the masked strain of tobacco mosaic virus. Mol Plant-Microbe Interact 6:45–54

    Google Scholar 

  • Nilsson-Tillgren T, Kolehmainen-Sevrus L, von Wettstein D (1969) Studies on the biosynthesis of TMV I. A system approaching a synchronized virus synthesis in a tobacco leaf. Mol Gen Genet 104:124–141

    PubMed  CAS  Google Scholar 

  • Noueiry AO, Lucas WJ, Gilbertson RL (1994) Two proteins of a plant DNA virus coordinate nuclear and plasmodesmal transport. Cell 76:925–932

    PubMed  CAS  Google Scholar 

  • Oparka KJ, Boevink P, Santa Cruz S (1996) Studying the movement of plant viruses using green fluorescent protein. Trends Plant Sci 1:412–418

    Google Scholar 

  • Oparka KJ,Prior DAM, Santa Cruz S, Padgett HS, Beachy RN (1997a) Gating of epidermal plasmodesmata is restricted to the leading edge of expanding infection sites of tobacco mosaic virus (TMV). Plant J 12:781–789

    PubMed  CAS  Google Scholar 

  • Oparka KJ, Roberts AG, Santa Cruz S, Boevink P, Prior DAM, Smallcombe A (1997b) Using GFP to study virus invasion and spread in plant tissues. Nature 388:401–402

    CAS  Google Scholar 

  • Overall RL, Blackman LM (1996) A model of the macromolecular structure of plasmodesmata. Trends Plant Sci 1:307–311

    Google Scholar 

  • Oxelfelt P (1970) Development of systemic tobacco mosaic virus infection. I. Initiation of infection and time course of virus multiplication. Phytopathol Z 69:202–211

    Google Scholar 

  • Oxelfelt P (1975) Development of systemic tobacco mosaic virus infection. IV. Synthesis of viral RNA and intact virus and systemic movement of two strains as influenced by temperature. Phytopathol Z 83:66–76

    Google Scholar 

  • Padgett HS, Epel BL, Kahn TW, Heinlein M, Watanabe Y, Beachy RN (1996) Distribution of tobamovirus movement protein in infected cells and implications for cell-to-cell spread of infection. Plant J 10:1079–1088

    Google Scholar 

  • Padidam M, Beachy RN, Fauquet CM (1995) Tomato leaf curl geminivirus from India has a bipartite genome and coat protein is not essential for infectivity. J Gen Virol 76:25–35

    PubMed  CAS  Google Scholar 

  • Palukaitis P (1987) Potato spindle tuber viroid: Investigation of the long-distance, intra-plant transport route. Virology 158:239–241

    PubMed  CAS  Google Scholar 

  • Patrick JW, Offler CE (1996) Post-sieve element transport of photoassimilates in sink regions. J Exp Bot 47:1165–1177

    PubMed  CAS  Google Scholar 

  • Petty ITD, Jackson AO (1990) Mutational analysis of barley stripe mosaic virus RNA b. Virology 179:712–718

    PubMed  CAS  Google Scholar 

  • Petty ITD, Edwards MC, Jackson AO (1990) Systemic movement of an RNA plant virus determined by a point substitution in a5’ leader sequence. Proc Natl Acad Sci 87:8894–8897

    PubMed  CAS  Google Scholar 

  • Powell CA, de Zoeten GA (1977) Replication of pea enation mosaic virus RNA in isolated pea nuclei. Proc Natl Acad Sci 74:2919–2922

    PubMed  CAS  Google Scholar 

  • Powell CA, de Zoeten GA, Gaard G (1977) The localization of pea enation mosaic virus-induced RNAdependent RNA polymerase in infected peas. Virology 78:135–143

    PubMed  CAS  Google Scholar 

  • Reddy DVR, Murant AF, Raschke JH, Mayo MA (1985) Properties and partial purification of infective material from plants containing groundnut rosette virus. Ann Appl Bio1 107:65–78

    Google Scholar 

  • Reid MS, Matthews REF (1966) On the origin of the mosaic induced by turnip yellow mosaic virus. Virology 28:563–570

    PubMed  CAS  Google Scholar 

  • Roberts A, Santa Cruz S, Roberts IM, Prior DAM, Turgeon R, Oparka K (1997) Phloem-unloading in sink leaves of Nicotiana benthamiana is symplastic and regulated by class III veins: comparison of fluorescent solute with fluorescent virus. Plant Cell 9:1381–1396

    PubMed  CAS  Google Scholar 

  • Robinson-Beers K, Evert RF (1991) Fine structure of plasmodesmata in mature leaves of sugarcane. Planta 184:307–318

    Google Scholar 

  • Rodríguez-Cerezo E, Findlay K, Shaw JG, Lomonossoff GP, Qiu SG, Linstead P, Shanks M, Risco C (1997) The coat and cylindrical inclusion proteins of a potyvirus are associated with connections between plant cells. Virology 236:296–306

    PubMed  Google Scholar 

  • Rojas MR, Zerbini FM, Allison RF, Gilbertson RL, Lucas WJ (1997) Capsid protein and helper component-proteinase function as potyvirus cell-to-cell movement proteins. Virology 237:283–295

    PubMed  CAS  Google Scholar 

  • Roossinck MJ, Palukaitis P (1990) Rapid induction and severity of symptoms in zucchini squash (Cucurbita pepo) map to RNA1 of cucumber mosaic virus. Mol Plant-Microbe Interact 3:188–192

    CAS  Google Scholar 

  • Russin WA, Evert RF, Vanderveer PJ, Sharkey TD, Briggs SP (1996) Modification of a specific class of plasmodesmata and loss of sucrose export ability in the sucrose export defectivel maize mutant. Plant Cell 8:645–658

    PubMed  CAS  Google Scholar 

  • Saito T, Yamanaka K, Okada Y (1990) Long-distance movement and viral assembly of tobacco mosaic virus mutants. Virology 176:329–336

    PubMed  CAS  Google Scholar 

  • Samuel G (1934) The movement of tobacco mosaic virus within the plant. Ann Appl Bio 121:90–111

    Google Scholar 

  • Sänger HL (1969) Functions of the two particles of tobacco rattle virus. J Viro 13:304–312

    Google Scholar 

  • Sanger M, Passmore B, Falk BW, Bruening G, Ding B, Lucas WJ (1994) Symptom severity of beet western yellows virus strain ST9 is conferred by the ST9-associated RNA and is not associated with virus release from the phloem. Virology 200:48–55

    PubMed  CAS  Google Scholar 

  • Santa Cruz S, Roberts AG, Prior DAM, Chapman S, Oparka KJ (1998) Cell-to-cell and phloem-mediated transport of potato virus X: the role of virions. Plant Cell 10:495–510

    Google Scholar 

  • Schaad MC, Carrington JC (1996) Suppression of long-distance movement of tobacco etch virus in a nonsusceptible host. J Viro 170:2556–2561

    Google Scholar 

  • Schaad MC, Lellis AD, Carrington JC (1997) VPg of tobacco etch potyvirus is a host genotype-specific determinant for long-distance movement. J Viro 171:8624–8631

    Google Scholar 

  • Schmitz J, Stussi-Garaud C, Tacke E, Prufer D, Rohde W, Rohfritsch O (1997) In situ localization of the putative movement protein (pr17) from potato leafroll luteovirus (PLRV) in infected and transgenic potato plants. Virology 235:311–322

    PubMed  CAS  Google Scholar 

  • Schneider WL, Greene AE, Allison RF (1997) The carboxy-terminal two-thirds of the cowpea chlorotic mottle bromovirus capsid protein is incapable of virion formation yet supports systemic movement. J Viro l71:4862–4865

    PubMed  CAS  Google Scholar 

  • Scholthof HB, Scholthof K-BG, Kikkert M, Jackson AO (1995) Tomato bushy stunt virus spread is regulated by two nested genes that function in cell-to-cell movement and host-dependent systemic invasion. Virology 213:425–438

    PubMed  CAS  Google Scholar 

  • Schulz A (1998) Phloem. Structure related to function. Prog Bot 59:429–475

    Google Scholar 

  • Séron K, Haenni A-L (1996) Vascular movement of plant viruses. Mol Plant-Microbe Interact 9435–442

    PubMed  Google Scholar 

  • Shepardson S, Esau K, McCrum R (1980) Ultrastructure of potato leaf phloem infected with potato leafroll virus. Virology 105:379–392

    PubMed  CAS  Google Scholar 

  • Siegel A, Zaitlin M, Sehgal OP (1962) The isolation of defective tobacco mosaic virus strains. Proc Natl Acad Sci 48:1845–1851

    PubMed  CAS  Google Scholar 

  • Simon AE, Li XH, Lew JE, Stange R, Zhang C, Polacco M, Carpenter CD (1992) Susceptibility and resistance of Arabidopsis thaliana to turnip crinkle virus. Mol Plant-Microbe Interact 5:496–503

    Google Scholar 

  • Sjölund RD (1997) The phloem sieve element: a river runs through it. Plant Cell 9:1137–1146

    PubMed  Google Scholar 

  • Sokolova M, Prufer D, Tacke E, Rohde W (1997) The potato leafroll virus17K movement protein is phosphorylated by a membrane-associated protein kinase from potato with biochemical features of protein kinase C. FEBS Lett 400:201–205

    PubMed  CAS  Google Scholar 

  • Solberg RA, Bald JG (1962) Virus invasion and multiplication during leaf histogenesis. Virology 17:359–361

    PubMed  CAS  Google Scholar 

  • Sudarshana MR, Wang HL, Lucas WJ, Gilbertson RL (1998) Dynamics of bean dwarf mosaic geminivirus cell-to-cell and long-distance movement in Phaseolus vulgaris revealed, using the green fluorescent protein. Mol Plant-Microbe Interact 11:277–291

    CAS  Google Scholar 

  • Tacke E, Schmitz J, Prufer D, Rohde W (1993) Mutational analysis of the nucleic acid-binding17-KDa phosphoprotein of potato leafroll luteovirus identifies an amphipathic a-helix as the domain for protein/protein interactions. Virology 197:294–282

    Google Scholar 

  • Takamatsu N, Ishikawa M, Meshi T, Okada Y (1987) Expression of bacterial chloramphenicol acetyltransferase gene in tobacco plants mediated by TMV-RNA. EMBO J 6:307–311

    PubMed  CAS  Google Scholar 

  • Tang W, Leisner SM (1997) Cauliflower mosaic virus isolate NY8153 breaks resistance in Arabidopsis ecotype En-2. Phytopathology 87:792–798

    PubMed  CAS  Google Scholar 

  • Thompson JR, Garcia-Arenal F (1998) The bundle sheath-phloem interface of Cucumis sativus is a boundary to systemic infection by tomato aspermy virus. Mol Plant-Microbe Interact 11:109–114

    CAS  Google Scholar 

  • Traynor P, Young BM, Ahlquist P (1991) Deletion analysis of brome mosaic virus2a protein: effects on RNA replication and systemic spread. J Viro 165:2807–2815

    Google Scholar 

  • Turgeon R (1986) The import-export transition in dicotyledonous leaves. In: Cronshaw J, Lucas WJ, Giaquinta RT (eds) Phloem transport. Alan R Liss, New York, pp 285–291

    Google Scholar 

  • Turgeon R (1996) Phloem loading and plasmodesmata. Trends Plant Sci 1:418–423

    Google Scholar 

  • Turgeon R, Webb JA, Evert RF (1975) Ultrastructure of minor veins of Curcurbita pepo leaves. Protoplasma 83:217–232

    Google Scholar 

  • Turgeon R, Webb JA (1976) Leaf development and phloem transport in Cucurbita pepo: maturation of the minor veins. Planta 129:265–269

    Google Scholar 

  • Vaewhongs AA, Lommel SA (1995) Virion formation is required for the long-distance movement of red clover necrotic mosaic virus in movement protein transgenic plants. Virology 212:607–613

    CAS  Google Scholar 

  • van Bel AJE (1993) The transport phloem. Specifics of its functioning. Prog Bot 54:134–150

    Google Scholar 

  • van Bel AJE, Kempers R (1997) The pore/plasmodesm unit; key element in the interplay between sieve element and companion cell. Prog Bot 58:278–291

    Google Scholar 

  • van Bel AJE, Oparka KJ (1995) On the validity of plasmodesmograms. Bot Acta 108:174–182

    Google Scholar 

  • van Bel AJE, van Rijen HVM (1994) Microelectrode-recorded development of the symplasmic autonomy of the sieve element/companion cell complex in the stem phloem of Lupinus luteus L. Planta 192:165–175

    Google Scholar 

  • van Bel AJE, van Kesteren WJP, Papenhuijzen C (1988) Ultrastructural indications for coexistence of symplastic and apoplastic phloem loading in Commelina benghalensis leaves. Planta 176:159–172

    Google Scholar 

  • van den Heuvel JFJM, de Blank CM, Peters D, van Lent JWM (1995) Localization of potato leafroll virus in leaves of secondarily infected potato plants. Eur J Plant Patho 1101:567–571

    Google Scholar 

  • van Lent JWM, Verduin BJM (1987) Detection of viral antigen in semi-thin sections of plant tissue by immunogold-silver staining and light microscopy. Neth J Patho 193:261–272

    Google Scholar 

  • Veidt I, Bouzaoubaa SE, Leiser RM, Ziegler-Graff V, Guilley H, Richards K, Jonard G (1992) Synthesis of full-length transcripts of beet western yellows virus RNA: messenger properties and biological activity in protoplasts. Virology 186:192–200

    PubMed  CAS  Google Scholar 

  • Volk GM, Turgeon R, Beebe DU (1996) Secondary plasmodesmata formation in the minor-vein phloem of Cucumis melo L and Cucurbita pepo L. Planta 199:425–432

    Google Scholar 

  • Waigmann E, Zambryski P (1995) Tobacco mosaic virus movement protein-mediated protein transport between trichome cells. Plant Cell 7:2069–2079

    PubMed  CAS  Google Scholar 

  • Waigmann E, Lucas WJ, Citovsky V, Zambryski P (1994) Direct functional assay for tobacco mosaic virus cell-to-cell movement protein and identification of a domain involved in increasing plasmodesmal permeability. Proc Natl Acad Sci 91:1433–1437

    PubMed  CAS  Google Scholar 

  • Wang HL, Gilbertson RL, Lucas WJ (1996) Spatial and temporal distribution of bean dwarf mosaic geminivirus in Phaseolus vulgaris and Nicotiana benthamiana. Phytopathology 86:1204–1214

    Google Scholar 

  • Watanabe Y, Morita N, Nishiguchi M, Okada Y (1987) Attenuated strains of tobacco mosaic virus reduced synthesis of a viral protein with a cell-to-cell movement function. J Mol Biol 194:699–704

    PubMed  CAS  Google Scholar 

  • Weiland JJ, Edwards MC (1994) Evidence that the as gene of barley stripe mosaic virus encodes determinants of pathogenicity to oat ( Avena sativa). Virology 201:116–126

    PubMed  CAS  Google Scholar 

  • Weiland JJ, Edwards MC (1996) A single nucleotide substitution in the as gene confers oat pathogenicity to barley stripe mosaic virus strain ND18. Mol Plant-Microbe Interact 9:62–67

    PubMed  CAS  Google Scholar 

  • White RG, Badelt K, Overall RL, Vesk M (1994) Actin associated with plasmodesmata. Protoplasma 180:169–184

    CAS  Google Scholar 

  • Wilson CR, Jones RAC (1992) Resistance to phloem transport of potato leafroll virus in potato plants. J Gen Virol 73:3219–3224

    PubMed  Google Scholar 

  • Wimmers LE, Turgeon R (1991) Transfer cells and solute uptake in minor veins of Pisum sativumleaves. Planta 186:2–12

    CAS  Google Scholar 

  • Wintermantel WM, Anderson EJ, Schoelz JE (1993) Identification of domains within gene VI of cauliflower mosaic virus that influence systemic infection of Nicotiana bigelovii in a light-dependent manner. Virology 196:789–798

    PubMed  CAS  Google Scholar 

  • Wintermantel WM, Banerjee N, Oliver JC, Paolillo DJ, Zaitlin M (1997) Cucumber mosaic virus is restricted from entering minor veins in transgenic tobacco exhibiting replicase-mediated resistance. Virology 231:248–257

    PubMed  CAS  Google Scholar 

  • Wu X, Shaw JG (1997) Evidence that a viral replicase protein is involved in the disassembly of tobacco mosaic virus particles in vivo. Virology 239:426–434

    PubMed  CAS  Google Scholar 

  • Wu X, Xu Z, Shaw JG (1994) Uncoating of tobacco mosaic virus RNA in protoplasts. Virology 200:256–262

    PubMed  CAS  Google Scholar 

  • Wyatt SD, Kuhn CW (1980) Derivation of a new strain of cowpea chlorotic mottle virus from resistant cowpeas. J Gen Virol 49:289–296

    CAS  Google Scholar 

  • Xiong Z, Kim KH, Giesman-Cookmeyer D, Lommel SA (1993) The roles of the red clover necrotic mosaic virus capsid and cell-to-cell movement proteins in systemic infection. Virology 192:27–32

    PubMed  CAS  Google Scholar 

  • Zech H (1952) Untersuchungen fiber den infektionsvorgang and die wanderung des tabakmosaikvirus im pflanzenkorper. Planta 40:461–514

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Derrick, P.M., Nelson, S. (1999). Plasmodesmata and Long-Distance Virus Movement. In: van Bel, A.J.E., Van Kesteren, W.J.P. (eds) Plasmodesmata. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60035-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60035-7_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65169-7

  • Online ISBN: 978-3-642-60035-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics