Skip to main content

Plasmodesmata in the Phloem-Loading Pathway

  • Chapter

Abstract

Twenty years ago, Brian Gunning began his analysis of the role of plasmodesmata in short-distance transport of assimilates to the phloem (Gunning1976) by stating that the “relevant evidence is both meagre and circumstantial” for a comprehensive discussion of the subject. At that time there were very few quantitative analyses of plasmodesmata along the assimilate pathway from the mesophyll to the phloem (Geiger et al.1973; Gunning et al.1974; Kuo et al.1974). There was also considerable controversy regarding the probable pathway(s) and mechanism(s) of phloem loading. Today, there is an extensive body of information on everything from plasmodesmal frequency and distribution in dicot and monocot species to detailed aspects of various phloem-loading models (Riesmeier et al.1993,1994; Sauer and Stolz1994; Grusak et al.1996; Rentsch and Frommer1996; Kiihn et al.1997). We also know much more about the fundamentals of plasmodesmal structure (Ding et al.1992b; Lucas et al.1993a) and the development and possible function of secondary plasmodesmata (Monzer1990,1991; Kollmann and Glockmann1991; Ding and Lucas1996; Ehlers and Kollmann1996; Ehlers et al.1996; Volk et al.1996). Analysis of alteration in carbon allocation and biomass partitioning in transgenic tobacco plants expressing native and mutated forms of the tobacco mosaic virus movement protein has led to the proposal that plasmodesmata in a leaf form a special communication network between the mesophyll and the phloem (Lucas et al.1996).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Badelt K, White RG, Overall RL, Vesk M (1994) Ultrastructural specializations of the cell wall sleeve around plasmodesmata. Am J Bot 81:1422–1427

    Google Scholar 

  • Beebe DU, Evert RF (1990) The morphology and anatomy of the leaf of Moricandia arvensis (L.) DC. (Brassicaceae). Bot Gaz 151:184–203

    Google Scholar 

  • Beebe DU, Evert RF (1992) Photoassimilate pathway(s) and phloem loading in the leaf of Moricandia arvensis (L.) DC. (Brassicaceae). Int J Plant Sci 153:61–77

    Google Scholar 

  • Beebe DU, McEvoy SM (1997) Structural and biochemical characterization of plasmodesmata from minor veins of Cucurbita pepo cotyledons. Plant Physiol 114:265

    Google Scholar 

  • Beebe DU, Turgeon R (1992) Localization of galactinol, raffinose, and stachyose synthesis in Cucurbita pepo leaves. Planta 188:354–361

    CAS  Google Scholar 

  • Beebe DU, McEvoy SM, Ben Achour Y (1996) Molecular and structural characterization of plasmodesmata in cotyledons and expanding leaves of Cucurbita pepo L.3rd Int Worksh on Basic and Applied Research in Plasmodesmal Biology, March1996, Zichron-Yakov, Israel, pp 4–7

    Google Scholar 

  • Bonnemain JL, Bourquin S, Renault S, Offler C, Fisher DG (1991) Transfer cells: structure and physiology. In: Bonnemain J-L, Delrot S, Lucas WJ, Dainty J (eds) Recent advances in phloem transport and assimilate compartmentation. Ouest Editions, Nantes, pp 74–83

    Google Scholar 

  • Botha CEJ (1992) Plasmodesmatal distribution, structure and frequency in relation to assimilation in C3 and C4 grasses in southern Africa. Planta 187:348–358

    CAS  Google Scholar 

  • Botha CEJ, Cross RHM (1997) Plasmodesmatal frequency in relation to short-distance transport and phloem loading in leaves of barley (Hordeum vulgare). Phloem is not loaded directly from the symplast. Physiol Plant 99:355–362

    CAS  Google Scholar 

  • Botha CEJ, Evert RF (1986) Free-space marker studies on the leaves of Saccharum offcinarum and Bromus unioloides. S Afr J Bot 52:335–342

    Google Scholar 

  • Botha CEJ, Evert RF (1988) Plasmodesmatal distribution and frequency in vascular bundles and contiguous tissues of the leaf of Themeda trianda. Planta 173:433–441

    Google Scholar 

  • Botha CEJ, van Bel AJE (1992) Quantification of symplastic continuity as visualised by plasmodesmograms: diagnostic value for phloem-loading pathways. Planta 187:359–366

    Google Scholar 

  • Botha CEJ, Hartley BJ, Cross RHM (1993) The ultrastructure and computer-enhanced digital image analysis of plasmodesmata at the Kranz mesophyll-bundle sheath interface of Themeda triandravar. imberis (retz) A. Camus in conventionally fixed leaf blades. Ann Bot 72:255–261

    Google Scholar 

  • Bouché-Pillon S, Fleurat-Lessard P, Fromont J-C, Serrano R, Bonnemain J-L (1994) Immunolocalization of the plasma membrane H+-ATPase in minor veins of Vicia faba in relation to phloem loading. Plant Physiol 105:691–697

    PubMed  Google Scholar 

  • Bush DR (1992) The proton-sucrose symport. Photosynth Res32:155–165

    CAS  Google Scholar 

  • Chonan N, Kawahara H, Matsuda T (1985) Ultrastructure of elliptical and diffuse bundles in the vegetative nodes of rice. Jpn J Crop Sci 54:393–402

    Google Scholar 

  • Colbert JT, Evert RF (1982) Leaf vasculature in sugarcane (Saccharum officinarum L.). Planta 156:136–151

    Google Scholar 

  • Dannenhoffer JM, Evert Jr. W, Evert RF (1990) Leaf vasculature in barley, Hordeum vulgare (Poaceae). Am J Bot 77:636–652

    Google Scholar 

  • Dannenhoffer JM, Evert RF (1994) Development of the vascular system in the leaf of barley (Hordeum vulgare L.). Int J Plant Sci 155:143–157

    Google Scholar 

  • Delrot S (1989) Loading of photoassimilates. In: Baker DA, Milburn JA (eds) Transport of photoassimilates. Longman, Essex, pp 167–205

    Google Scholar 

  • DeWitt ND, Sussman MR (1995) Immunocytological localization of an epitope-tagged plasma membrane proton pump (H+-ATPase) in phloem companion cells. Plant Cell 7:2053–2067

    Google Scholar 

  • Ding B, Lucas WJ (1996) Secondary plasmodesmata: biogenesis, special functions, and evolution. In: Smallwood M, Knox P, Bowles D (eds) Membranes: specialized functions in plants. BIOS Scientific, Oxford, pp 489–506

    Google Scholar 

  • Ding B, Parthasarathy MV, Niklas K, Turgeon R (1988) A morphometric analysis of the phloem-unloading pathway in developing tobacco leaves. Planta 176:307–318

    Google Scholar 

  • Ding B, Haudenshield J, Hull R, Wolf S, Beachy RN, Lucas WJ (1992a) Secondary plasmodesmata are specific sites of localization of the tobacco mosaic virus movement protein in transgenic tobacco plants. Plant Cell 4:915–928

    PubMed  CAS  Google Scholar 

  • Ding B, Turgeon R, Parthasarathy MV (1992b) Substructure of freeze-substituted plasmodesmata. Protoplasma 169:28–41

    Google Scholar 

  • Ding B, Haudenshield JS, Willmitzer L, Lucas WJ (1993) Correlation between arrested secondary plasmodesmal development and onset of accelerated senescence in yeast acid invertase transgenic tobacco plants. Plant J 4:179–189

    PubMed  CAS  Google Scholar 

  • Ehlers K, Kollmann R (1996) Formation of branched plasmodesmata in regenerating Solanum nigrum protoplasts. Planta 199:126–138

    CAS  Google Scholar 

  • Ehlers K, Schulz M, Kollmann R (1996) Subcellular localization of ubiquitin in plant protoplasts and the function of ubiquitin in selective degradation of outer-wall plasmodesmata in regenerating protoplasts. Planta 199:139–151

    CAS  Google Scholar 

  • Erwee MG, Goodwin PB (1985) Symplast domains in extrastelar tissues of Egeria densa Planch. Planta 163:9–19

    CAS  Google Scholar 

  • Erwee MG, Goodwin PB, van Bel AJE (1985) Cell-cell communication in the leaves of Commelina cyanea and other plants. Plant Cell Environ 8:173–178

    Google Scholar 

  • Esau K (1977) Anatomy of seed plants. Wiley, New York

    Google Scholar 

  • Esau K, Thorsch J (1985) Sieve plate pores and plasmodesmata, the communication channels of the symplast: ultrastructural aspects and developmental relations. Am J Bot 72:1641–1653

    Google Scholar 

  • Evert RF (1986) Phloem loading in maize. In: Shannon JC, Knievel DP, Boyer CD (eds) Regulation of carbon and nitrogen reduction and utilization in maize. American Society of Plant Physiology, Rockville, pp 67–81

    Google Scholar 

  • Evert RF, Mierzwa RJ (1986) Pathway(s) of assimilate movement from mesophyll cells to sieve tubes in the Beta vulgaris leaf. In: Cronshaw J, Giaquinta RT, Lucas WJ (eds) Phloem transport. Alan Liss, New York, pp 419–432

    Google Scholar 

  • Evert RF, Mierzwa RJ (1989) The cell wall-plasmalemma interface in sieve tubes of barley. Planta 17724–34

    Google Scholar 

  • Evert RF, Russin WA (1991) Aspects of sieve element structure in Zea mays. In: Bonnemain J-L, Delrot S, Lucas WJ, Dainty J (eds) Recent advances in phloem transport and assimilate compartmentation. Ouest Editions, Nantes, pp 47–57

    Google Scholar 

  • Evert RF, Russin WA (1993) Structurally, phloem unloading in the maize leaf cannot be symplastic. Am J Bot 80:1310–1317

    Google Scholar 

  • Evert RF, Eschrich W, Heyser W (1977) Distribution and structure of the plasmodesmata in mesophyll and bundle-sheath cells of Zea mays L. Planta 136:77–89

    Google Scholar 

  • Evert RF, Eschrich W, Heyser W (1978) Leaf structure in relation to solute transport and phloem loading in Zea mays L. Planta 138:279–294

    Google Scholar 

  • Evert RF, Botha CEJ, Mierzwa RJ (1985) Free-space marker studies on the leaf of Zea mays L. Protoplasma 126:62–73

    Google Scholar 

  • Evert RF, Russin WA, Bosabalidis AM (1996a) Anatomical and ultrastructural changes associated with sink-to-source transition in developing maize leaves. Int J Plant Sci 157:247–261

    Google Scholar 

  • Evert RF, Russin WA, Botha CEJ (1996b) Distribution and frequency of plasmodesmata in relation to photoassimilate pathways and phloem loading in the barley leaf. Planta 198:572–579

    CAS  Google Scholar 

  • Farrar J, van der Schoot C, Drent P, van Bel AJE (1992) Symplastic transport of Lucifer Yellow in mature leaf blades of barley: potential mesophyll-sieve-tube transfer. New Phyto l120:191–196

    Google Scholar 

  • Fellows RJ, Geiger DR (1974) Structural and physiological changes in sugar beet leaves during sink to source conversion. Plant Physio l54:877–885

    PubMed  CAS  Google Scholar 

  • Fisher DG (1986) Ultrastructure, plasmodesmatal frequency, and solute concentration in green areas of variegated Coleus blumei Benth. leaves. Planta 169:141–152

    Google Scholar 

  • Fisher DG (1988) Movement of lucifer yellow in leaves of Coleus blumei Benth. Plant Cell Environ 11:639–644

    Google Scholar 

  • Fisher DG (1990) Distribution of plasmodesmata in leaves. A comparison of Cananga odorata with other species using different measures of plasmodesmatal frequency. In: Robards AW, Jongsma H, Lucas WJ, Pitts J, Spray D (eds) Parallels in cell to cell junctions in plants and animals, vol H46. Springer, Berlin Heidelberg New York, pp 199–221

    Google Scholar 

  • Fisher DG (1991) Plasmodesmatal frequency and other structural aspects of assimilate collection and phloem loading in leaves of Sonchus oleraceus (Asteraceae), a species with minor vein transfer cells. Am J Bot 78:1549–1559

    Google Scholar 

  • Fisher DG, Evert RF (1982a) Studies on the leaf of Amaranthus retroflexus (Amaranthaceae): morphology and anatomy. Am J Bot 69:1133–1147

    Google Scholar 

  • Fisher DG, Evert RF (1982b) Studies on the leaf of Amaranthus retroflexus (Amaranthaceae): ultrastructure, plasmodesmatal frequency, and solute concentration in relation to phloem loading. Planta 155:377–387

    CAS  Google Scholar 

  • Flora LL, Madore MA (1996) Significance of minor-vein anatomy to carbohydrate transport. Planta 198:171–178

    CAS  Google Scholar 

  • Fritz E, Evert RF, Nasse H (1989) Loading and transport of assimilates in different maize leaf bundles. Digital image analysis of14C microautoradiographs. Planta 178:1–9

    Google Scholar 

  • Gagnon M-J, Beebe DU (1996a) Establishment of a plastochron index and analysis of the sink-to-source transition in leaves of Moricandia arvensis (L.) DC. (Brassicaceae). Int J Plant Sci 157:262–268

    Google Scholar 

  • Gagnon M-J, Beebe DU (1996b) Minor vein differentiation and the development of specialized plasmodesmata between companion cells and contiguous cells in expanding leaves of Moricandia arvensis (L.) DC. (Brassicaceae). Int J Plant Sci 157:658–697

    Google Scholar 

  • Gamalei Y (1989) Structure and function of leaf minor veins in trees and herbs. A taxonomic review. Trees 3:96–110

    Google Scholar 

  • Gamalei YV, Pakhomova MV (1982) Distribution of plasmodesmata and parenchyma transport of assimilates in the leaves of several dicots. Sov Plant Physio 128:649–661

    Google Scholar 

  • Geiger DR (1975) Phloem loading. In: Zimmermann MH, Milburn JA (eds) Encyclopedia of plant physiology. Springer, Berlin Heidelberg New York, pp 395–431

    Google Scholar 

  • Geiger DR (1976) Phloem loading in source leaves. In: Wardlaw IF, Passioura JB (eds) Transport and transfer processes in plants. Academic Press, New York, pp 167–183

    Google Scholar 

  • Geiger DR, Giaquinta RT, Sovonick SA, Fellows RJ (1973) Solute distribution in sugar beet leaves in relation to phloem loading and translocation. Plant Physio 152:585–589

    Google Scholar 

  • Giaquinta RT (1983) Phloem loading of sucrose. Annu Rev Plant Physiol 34:347–387

    CAS  Google Scholar 

  • Grusak M, Beebe DU, Turgeon R (1996) Phloem loading. In: Zamski E, Schaffer A (eds) Photoassimilate distribution in plants and crops: source-sink relationships. Dekker, New York, pp 209–227

    Google Scholar 

  • Gunning BES (1976) The role of plasmodesmata in short distance transport to and from the phloem. In: Gunning BES, Robards AW (eds) Intercellular communication in plants: studies on plasmodesmata. Springer, Berlin Heidelberg New York, pp 203–227

    Google Scholar 

  • Gunning BES, Pate JS (1969) “Transfer cells” plant cells with wall ingrowths, specialized in relation to short distance transport of solutes their occurrence, structure and development. Protoplasma 68:107–133

    Google Scholar 

  • Gunning BES, Pate JS, Briarty LG (1968) Specialized “transfer cells” in minor veins of leaves and their possible significance in phloem translocation. J Cell Biol 37:C7–C12

    Google Scholar 

  • Gunning BES, Pate JS, Minchin FR, Marks I (1974) Quantitative aspects of transfer cell structure in relation to vein loading in leaves and solute transport in legume nodules. Symp Soc Exp Biol 28:87–126

    PubMed  CAS  Google Scholar 

  • Haritatos E, Keller F, Turgeon R (1996) Raffinose oligosaccharide concentrations measured in individual cell and tissue types in Cucumis melo L. leaves: implications for phloem loading. Planta 198:614–622

    CAS  Google Scholar 

  • Hattersley PW, Browning AJ (1981) Occurrence of the suberized lamella in leaves of grasses of different photosynthetic types. I. In parenchymatous bundle sheaths and PCR (Kranz) sheaths. Protoplasma 109:371–401

    Google Scholar 

  • Heyser W (1980) Phloem loading in the maize leaf. Ber Dtsch Bot Ges 93:221–228

    CAS  Google Scholar 

  • Hickey LJ (1979) A revised classification of the architecture of dicotyledonous leaves. In: Metcalf CR, Chalk L (eds) Anatomy of the dicotyledons, vol1. Oxford, New York, pp 25–39

    Google Scholar 

  • Holthaus U, Schmitz K (1991) Distribution and immunolocalization of stachyose synthase in Cucumis melo L. Planta 185:479–486

    CAS  Google Scholar 

  • Isebrands JG, Larson PR (1973) Anatomical changes during leaf ontogeny in Populus deltoides. Am J Bot 60:199–208

    Google Scholar 

  • Jorgensen RA, Atkinson RG, Forster RLS, Lucas WJ (1998) An RNA-based information superhighway in plants. Science 279:1486–1487

    PubMed  CAS  Google Scholar 

  • Kollmann R, Glockmann C (1991) Studies on graft unions. III. On the mechanism of secondary formation of plasmodesmata at the graft interface. Protoplasma 165:71–85

    Google Scholar 

  • Kühn C, Franceschi VR, Schulz A, Lemoine R, Frommer WB (1997) Macromolecular trafficking indicated by localization and turnover of sucrose transporters in enucleate sieve elements. Science 275:1298–1300

    PubMed  Google Scholar 

  • Kuo J, O’Brien TP, Canny MJ (1974) Pit-field distribution, plasmodesmatal frequency, and assimilate flux in the mestome sheath of wheat leaves. Planta 121:97–118

    Google Scholar 

  • Lee HJ, Ashley DA, Brown RH (1980) Sucrose concentration gradients in wheat leaves. Crop Sci 20:95–98

    CAS  Google Scholar 

  • Leisner SM, Turgeon R, Howell SH (1992) Long distance movement of cauliflower mosaic virus in infected turnip plants. Mol Plant-Microbe Inter 5:41–47

    Google Scholar 

  • Lucas WJ, Ding B, van der Schoot C (1993a) Plasmodesmata and the supracellular nature of plants. New Phyto l125:435–476

    Google Scholar 

  • Lucas WJ, Olesinski A, Hull RJ, Haudenshield JS, Deom CM, Beachy RN, Wolf S (1993b) Influence of the tobacco mosaic virus30-kDa movement protein on carbon metabolism and photosynthate partitioning in transgenic plants. Planta 190:88–96

    CAS  Google Scholar 

  • Lucas WJ, Balachandran S, Park J, Wolf S (1996) Plasmodesmal companion cell-mesophyll communication in the control over carbon metabolism and phloem transport: insights gained from viral movement proteins. J Exp Bot 47:1119–1128

    PubMed  CAS  Google Scholar 

  • Madore MA, Lucas WJ (1989) Transport of photoassimilates between leaf cells. In: Baker DA, Milburn JA (eds) Transport of photoassimilates. Longman, Essex, pp 49–78

    Google Scholar 

  • Madore MA, Oross JW, Lucas WJ (1986) Symplastic transport in Ipomoea tricolorsource leaves. Demonstration of functional symplastic connections from mesophyll to minor veins by a novel dyetracer method. Plant Physio 182:432–442

    Google Scholar 

  • McCauley MM, Evert RF (1988a) Morphology and vasculature of the leaf of potato ( Solanum tuberosum). Am J Bot75:377–390

    Google Scholar 

  • McCauley MM, Evert RF (1988b) The anatomy of the leaf of potato, Solanum tuberosumL. ‘Russet Burbank’. Bot Gaz 149:179–195

    Google Scholar 

  • McCauley MM, Evert RF (1989) Minor veins of the potato ( Solanum tuberosumL.) leaf ultrastructure and plasmodesmatal frequency. Bot Gaz 150:351–368

    Google Scholar 

  • Monzer J (1990) Secondary formation of plasmodesmata in cultured cells—structural and functional aspects. In: Robards AW, Jongsma H, Lucas WJ, Pitts J, Spray D (eds) Parallels in cell to cell junctions in plants and animals, vol H46. Springer, Berlin Heidelberg New York, pp 185–197

    Google Scholar 

  • Monzer J (1991) Ultrastructure of secondary plasmodesmata formation in regenerating Solanum nigrum protoplast cultures. Protoplasma 165:86–95

    Google Scholar 

  • Nelson RS, van Bel AJE (1998) The mystery of virus trafficking into, through and out of vascular tissue. Prog Bot 59:476–533

    Google Scholar 

  • Neuffer MG, Coe EH, Wessler SR (1997) Mutants of maize. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Olesen P (1979) The neck constriction in plasmodesmata. Evidence for a peripheral sphincter-like structure revealed by fixation with tannic acid. Planta 144:349–358

    Google Scholar 

  • Olesen P, Robards AW (1990) The neck region of plasmodesmata: general architecture and some functional aspects. In: Robards AW, Lucas WJ, Pitts JD, Jongsma HJ, Spray DC (eds) Parallels in cell to cell junctions in plants and animals, vol H46. Springer, Berlin Heidelberg New York, pp 145–170

    Google Scholar 

  • Overall RL, Blackman LM (1996) A model of the macromolecular structure of plasmodesmata. Trends Plant Sci 1:307–311

    Google Scholar 

  • Palevitz BA, Hepler PK (1985) Changes in dye coupling of stomatal cells of Allium and Commelina demonstrated by microinjection of Lucifer Yellow. Planta 164:473–479

    Google Scholar 

  • Pristupa NA (1964) Redistribution of radioactive assimilates in the leaf tissues of cereals. Sov Plant Physiol 11:31–36

    Google Scholar 

  • Rentsch D, Frommer WB (1996) Molecular approaches towards an understanding of loading and unloading of assimilates in higher plants. J Exp Bot 47:1199–1204

    PubMed  CAS  Google Scholar 

  • Riesmeier JW, Hirner B, Frommer WB (1993) Potato sucrose transporter expression in minor veins indicates a role in phloem loading. Plant Cell 5:1591–1598

    PubMed  CAS  Google Scholar 

  • Riesmeier JW, Willmitzer L, Frommer WB (1994) Evidence for an essential role of the sucrose transporter in phloem loading and assimilate partitioning. EMBO J 13:1–7

    PubMed  CAS  Google Scholar 

  • Robinson-Beers K, Evert RF (1991 a) Ultrastructure of and plasmodesmatal frequency in mature leaves of sugarcane. Planta 184:291–306

    Google Scholar 

  • Robinson-Beers K, Evert RF (1991b) Fine structure of plasmodesmata in mature leaves of sugarcane. Planta 184:307–318

    Google Scholar 

  • Robinson-Beers K, Evert RF (1991c) Structure and development of plasmodesmata at the mesophyll/bundle sheath cell interface of sugarcane leaves. In: Bonnemain J-L, Delrot S, Lucas WJ, Dainty J (eds) Recent advances in phloem transport and assimilate compartmentation. Ouest Editions, Nantes, pp 116–122

    Google Scholar 

  • Robinson-Beers K, Sharkey TD, Evert RF (1990) Import of14C-photosynthate by developing leaves of sugarcane. Bot Acta 103:424–429

    CAS  Google Scholar 

  • Russell SH, Evert RF (1985) Leaf vasculature in Zea mays L. Planta 164:448–458

    Google Scholar 

  • Russin WA, Evert RF (1984) Studies on the leaf of Populus deltoides (Salicaceae): morphology and anatomy. Amer J Bot 71:1398–1415

    Google Scholar 

  • Russin WA, Evert RF (1985a) Studies on the leaf of Populus deltoides (Salicaceae): quantitative aspects, and solute concentrations of the sieve-tube members. Amer J Bot 72:487–500

    Google Scholar 

  • Russin WA, Evert RF (1985b) Studies on the leaf of Populus deltoides (Salicaceae): ultrastructure, plasmodesmatal frequency and solute concentrations. Am J Bot 72:1232–1247

    Google Scholar 

  • Russin WA, Evert RF, Vanderveer PJ, Sharkey TD, Briggs SP (1996) Modification of a specific class of plasmodesmata and loss of sucrose export ability in the sucrose export defectivel maize mutant. Plant Cell 8:645–658

    PubMed  CAS  Google Scholar 

  • Sauer N, Stolz J (1994) SUC1 and SUC2: two sucrose transporters from Arabidopsis thaliana: expression and characterization in baker’s yeast and identification of the histidine tagged protein. Plant J 6:67–77

    PubMed  CAS  Google Scholar 

  • Schmalstig JG, Geiger DR (1987) Phloem unloading in developing leaves of sugar beet. II. Termination of phloem unloading. Plant Physio 183:49–52

    Google Scholar 

  • Schmitz K, Cuypers B, Moll M (1987) Pathway of assimilate transfer between mesophyll cells and minor veins in leaves of Cucumis melo L. Planta 171:19–29

    CAS  Google Scholar 

  • Stadler R, Sauer N (1996) The Arabidopsis thaliana AtSUC2 gene is specifically expressed in companion cells. Bot Acta 109:299–306

    CAS  Google Scholar 

  • Stadler R, Brandner J, Schulz A, Gahrtz M, Sauer N (1995) Phloem loading by the PmSUC2 sucrose carrier from Plantago major occurs into companion cells. Plant Cell 7:1545–1554

    PubMed  CAS  Google Scholar 

  • Stitt M, Heldt HW (1985) Generation and maintenance of concentration gradients between the mesophyll and bundle sheath in maize leaves. Biochim Biophys Acta 808:400–414

    CAS  Google Scholar 

  • Truernit E, Sauer N (1995) The promoter of Arabidopsis thaliana SUC2 sucrose-H+ symporter gene directs expression of (3-glucuronidase to the phloem: evidence for phloem loading and unloading by SUC2. Planta 196:564–570

    PubMed  CAS  Google Scholar 

  • Tucker EB (1990) Calcium-loaded1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid blocks cell-to-cell diffusion of carboxyfluorescein in staminal hairs of Setcreasea purpurea. Planta 182:34–38

    CAS  Google Scholar 

  • Turgeon R (1986) The import-export transition in dicotyledonous leaves. In: Cronshaw J, Lucas WJ, Giaquinta RT (eds) Phloem transport. Alan Liss, New York, pp 285–291

    Google Scholar 

  • Turgeon R (1987) Phloem unloading in tobacco sink leaves: insensitivity to anoxia indicates a symplastic pathway. Planta 171:73–81

    Google Scholar 

  • Turgeon R (1989) The sink-source transition in leaves. Annu Rev Plant Physiol Plant Mol Biol 40:119–138

    Google Scholar 

  • Turgeon R (1991) Symplastic phloem loading and the sink-source transition in leaves: a model. In: Bonnemain J-L, Delrot S, Lucas WJ, Dainty J (eds) Recent advances in phloem transport and assimilate compartmentation. Ouest Editions, Nantes, pp 18–22

    Google Scholar 

  • Turgeon R (1992) Symplastic phloem loading: evaluation of a current model.2nd Int Worksh on Basic and Applied Research in Plasmodesmatal Biology, Sept1992, Oosterbeck, The Netherlands, pp 111–114

    Google Scholar 

  • Turgeon R (1996) Phloem loading and plasmodesmata. Trends Plant Sci 1:418–423

    Google Scholar 

  • Turgeon R, Beebe DU (1991) The evidence for symplastic phloem loading. Plant Physiol 96:349–354

    PubMed  CAS  Google Scholar 

  • Turgeon R, Gowan E (1990) Phloem loading in Coleus blumei in the absence of carrier-mediated uptake of export sugar from the apoplast. Plant Physio 194:1244–1249

    Google Scholar 

  • Turgeon R, Gowan E (1992) Sugar synthesis and phloem loading in Coleus blumeileaves. Planta 187388–394

    CAS  Google Scholar 

  • Turgeon R, Hepler PK (1989) Symplastic continuity between mesophyll and companion cells in minor veins of mature Cucurbita pepo L. leaves. Planta 179:24–31

    Google Scholar 

  • Turgeon R, Webb JA (1976) Leaf development and phloem transport in Cucurbita pepo Maturation of the minor veins. Planta 129:265–269

    Google Scholar 

  • Turgeon R, Webb JA, Evert RF (1975) Ultrastructure of minor veins in Cucurbita pepo leaves. Protoplasma 83:217–232

    Google Scholar 

  • Turgeon R, Beebe DU, Gowan E (1993) The intermediary cell: minor-vein anatomy and raffinose oligosaccharide synthesis in the Scrophulariaceae. Planta 191:446–456

    CAS  Google Scholar 

  • van Bel AJE (1989) The challenge of symplastic phloem loading. Bot Acta 102:183–185

    Google Scholar 

  • van Bel AJE (1992) Pathways and mechanisms of phloem loading. In: Pollock CJ, Farrar JF, Gordon AJ (eds) Carbon partitioning within and between organisms. Bios, Oxford, pp 53–70

    Google Scholar 

  • van Bel AJE (1993) Strategies of phloem loading. Annu Rev Plant Physiol Plant Mol Biol 44:253–281

    Google Scholar 

  • van Bel AJE, Koops AJ (1985) Uptake of [14C] sucrose in isolated minor-vein networks of Commelina benghalensis L. Planta 164:362–369

    Google Scholar 

  • van Bel AJE, Oparka KJ (1995) On the validity of plasmodesmograms. Bot Acta 108:174–182

    Google Scholar 

  • van Bel AJE, van Kesteren WJP, Papenhuijzen C (1988) Ultrastructural indications for coexistence of symplastic and apoplastic phloem loading in Commelina benghalensis leaves. Planta 176:159–172

    Google Scholar 

  • van Bel AJE, Gamalei YV, Ammerlaan A, Bik LPM (1992) Dissimilar phloem loading in leaves with symplasmic or apoplasmic minor-vein configurations. Planta 186:518–525

    Google Scholar 

  • van Bel AJE, Ammerlaan A, van Dijk AA (1994) A three-step screening procedure to identify the mode of phloem loading in intact leaves. Evidence for symplasmic and apoplasmic loading associated with the type of companion cell. Planta 192:32–39

    Google Scholar 

  • van Kesteren WJP, van der Schoot C, van Bel AJE (1988) Symplastic transfer of fluorescent dyes from mesophyll to sieve tubes in stripped leaf tissue and partly isolated minor veins of Commelina benghalensis. Plant Physio 188:667–670

    Google Scholar 

  • Volk GM, Turgeon R, Beebe DU (1996) Secondary plasmodesmata formation in the minor vein phloem of Cucumis melo L. and Cucurbita pepo L. Planta 199:425–432

    Google Scholar 

  • Walsh MA, Evert RF (1975) Ultrastructure of metaphloem sieve elements in Zea mays. Protoplasma 83:365–388

    Google Scholar 

  • Wang N, Nobel PS (1998) Phloem transport of fructans in the crassulacean acid metabolism species Agave deserti. Plant Physiol 116:709–714

    PubMed  CAS  Google Scholar 

  • Warmbrodt RD, Van DerWoude WJ (1990) Leaf of Spinacia oleracea(spinach): ultrastructure, and plasmodesmatal distribution and frequency, in relation to sieve-tube loading. Am J Bot 189:1361–1377

    Google Scholar 

  • White RG, Badelt K, Overall RL, Vesk M (1994) Actin associated with plasmodesmata. Protoplasma 180:169–184

    CAS  Google Scholar 

  • Wimmers LE, Turgeon R (1991) Transfer cells and solute uptake in minor veins of Pisum sativum leaves. Planta 186:2–12

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Beebe, D.U., Russin, W.A. (1999). Plasmodesmata in the Phloem-Loading Pathway. In: van Bel, A.J.E., Van Kesteren, W.J.P. (eds) Plasmodesmata. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60035-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60035-7_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65169-7

  • Online ISBN: 978-3-642-60035-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics