Skip to main content

Physiological Control of Plasmodesmal Gating

  • Chapter
Plasmodesmata

Abstract

From the start, a freshly divided plant cell is linked to its neighbors by plasmodesmata, offering a symplasmic pathway for the exchange of solutes. During differentiation as well as at maturity, however, the properties of adjacent cells, including the active set of enzymes and the metabolite levels, may be different. Dissimilarity and autonomy of individual cells can develop only if plasmodesmal passage is controlled. Indeed, a transient uncoupling of cells was shown for neighbouring cells that renewed mitotic activity asynchronously (Ehlers and Kollmann1996).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angell SM, Davies C, Baulcombe DC (1996) Cell to cell movement of potato virus X is associated with a change in the size exclusion limit of plasmodesmata in trichome cells of Nicotiana clevelandii. Virology 216:197–201

    Article  PubMed  CAS  Google Scholar 

  • Arisz WH (1969) Intercellular polar transport and the role of the plasmodesmata in coleoptiles and Vallisneria leaves. Acta Bot Neerl 18:14–38

    CAS  Google Scholar 

  • Arisz WH, Wiersema EP (1966) Symplasmatic long distance transport in Vallisneria plants investigated by means of autoradiograms. Proc K Ned Akad Wet Ser C 69:223–241

    Google Scholar 

  • Balachandran S, Xiang Y, Schobert C, Thompson GA, Lucas WJ (1997) Phloem sap proteins from Cu curbita maxima and Ricinus communis have the capacity to traffic cell to cell through plasmodesmata. Proc Natl Acad Sci 94:14150–14155

    Article  PubMed  CAS  Google Scholar 

  • Baron-Epel O, Hernandez D, Jiang L-W, Meiners S, Schindler M (1988) Dynamic continuity of cytoplasmic and membrane compartments between plant cells. J Cell Biol 106:705–721

    Article  Google Scholar 

  • Beebe DU, Turgeon R (1992) Localization of galactinol, raffinose, and stachyose synthesis in Cucurbito pepo leaves. Planta 188:354–361

    Article  CAS  Google Scholar 

  • Behnke H-D (1989) Structure of the phloem. In: Baker DA, Milburn JA (eds) Transport of photoassimilates. Longman, Harlow, pp 79–137

    Google Scholar 

  • Behnke H-D, Sjolund RD (1990) Sieve elements—comparative structure, induction and development. Springer Verlag, Berlin Heidelberg New York

    Google Scholar 

  • Bostwick DD, Dannenhoffer JM, Skaggs MI, Lister RM, Larkins BA, Thompson GA (1992) Pumpkin phloem lectin genes are specifically expressed in companion cells. Plant Cell 4:1539–1548

    Article  PubMed  CAS  Google Scholar 

  • Botha CEJ, Hartley BJ, Cross RHM (1993) The ultrastructure and computer-enhanced digital image analysis of plasmodesmata at the Kranz mesophyll-bundle sheath interface of Themeda triandra var. imberbis (Retz) A. Camus in conventionally-fixed leaf blades. Ann Bot 72:255–261

    Article  Google Scholar 

  • Bräutigam E, Müller E (1975) Transportprozesse in Vallisneria-Blättern and die Wirkung von Kinetin and Kolchizin. II. Symplastischer Transport von a-Aminobuttersäure in Vallisneria-Blättern and die Wirkung von Kinetin. Biochem Physiol Pflanzen 167:17–28

    Google Scholar 

  • Clark AM, Jacobsen KR, Bostwick DE, Dannenhoffer JM, Skaggs MI, Thompson GA (1997) Molecular characterization of a phloem-specific gene encoding the filament protein, Phloem Protein1 (PP1), from Cucurbita maxima. Plant J 12:49–61

    Article  PubMed  CAS  Google Scholar 

  • Cleland RE, Fujiwara T, Lucas WJ (1994) Plasmodesmal-mediated cell-to-cell transport in wheat roots is modulated by anaerobic stress. Protoplasma 178:81–85

    Article  PubMed  CAS  Google Scholar 

  • Coutts RHA (1978) Suppression of virus-induced local lesions in plasmolysed tissue. Plant Sci Lett 12:77–85

    Article  CAS  Google Scholar 

  • Dannenhoffer JM, Schulz A, Bostwick DE, Skaggs MI, Thompson GA (1997) Expression of phloem lectin is developmentally linked to vascular differentiation in cucurbits. Planta 201:405–414

    Article  CAS  Google Scholar 

  • Delmer DP, Volokita M, Solomon M, Fritz U, Delphendahl W, Herth W (1993) A monoclonal antibody recognizes a65 kDa higher plant membrane polypeptide which undergoes cation-dependent association with callose synthase in vitro and co-localizes with sites of high callose deposition in vivo. Protoplasma 176:33–42

    Article  CAS  Google Scholar 

  • Delrot S (1989) Loading of photo assimilates. In: Baker DA, Milburn JA (eds) Transport of photoassimilates.. Longman Scientific & Technical, Harlow, pp 167–205

    Google Scholar 

  • Derrick PM, Barker H, Oparka KJ (1992) Increase in plasmodesmatal permeability during cell-to-cell spread of tobacco rattle virus from individually inoculated cells. Plant Cell 4:1405–1412

    Article  PubMed  Google Scholar 

  • Ding B (1997) Cell-to-cell transport of macromolecules through plasmodesmata: a novel signalling pathway in plants. Trends Cell Bio l7:5–9

    Article  PubMed  CAS  Google Scholar 

  • Ding B, Turgeon R, Parthasarathy MV (1992) Substructure of freeze-substituted plasmodesmata. Protoplasma 169:28–41

    Article  Google Scholar 

  • Ding B, Kwon M-O, Warnberg L (1996) Evidence that actin filaments are involved in controlling the permeability of plasmodesmata in tobacco mesophyll. Plant J 10:157–164

    Article  Google Scholar 

  • Ehlers K (1996) Untersuchungen zur Entstehung, Struktur, Funktion and Regulation der symplastischen Zellverbindungen bei regenerierenden Solanum nigrum-Protoplasten. PhD Thesis, ChristianAlbrechts-Universität, Kiel

    Google Scholar 

  • Ehlers K, Kollmann R (1996) Regulation of the symplasmic contact between physiologically different cells. III Int Worksh on Basic and Applied Research in Plasmodesmal Biology, Israel, March 10–16,1996, pp 77–81

    Google Scholar 

  • Epel BL (1994) Plasmodesmata: composition, structure and trafficking. Plant Mol Biol 26:1343–1356

    Article  PubMed  CAS  Google Scholar 

  • Epel BL, Erlanger MA (1991) Light regulates symplastic communication in etiolated corn seedlings. Physiol Plant 83:149–153

    Article  CAS  Google Scholar 

  • Epel BL, Padgett HS, Heinlein M, Beachy RN (1996) Plant virus movement protein dynamics probed with a GFP protein fusion. Gene 173:75–79

    Article  PubMed  CAS  Google Scholar 

  • Erwee MG, Goodwin PB (1983) Characterisation of the Egeria densa Planch. leaf symplast. Planta 158:320–328

    Article  CAS  Google Scholar 

  • Erwee MG, Goodwin PB (1984) Characterization of the Egeria densa Planch. leaf symplast: Response to plasmolysis, deplasmolysis and to aromatic amino acids. Protoplasma 122:162–168

    Article  CAS  Google Scholar 

  • Erwee MG, Goodwin PB (1985) Symplast domains in extrastelar tissues of Egeria densa Planch. Planto 163:9–19

    Article  CAS  Google Scholar 

  • Evert RF, Eschrich W, Heyser W (1977) Distribution and structure of the plasmodesmata in mesophyll and bundle-sheath cells of Zea mays L. Planta 136:77–89

    Article  Google Scholar 

  • Evert RF, Botha CEJ, Mierzwa RJ (1985) Free-space marker studies on the leaf of Zea mays L. Protoplasma 126:62–73

    Article  Google Scholar 

  • Fensom DS, Thompson RG, Caldwell CD (1990) Ammonia gas temporarily interrupts translocation of11C photosynthate in sunflower. J Exp Bot 41:11–14

    Article  CAS  Google Scholar 

  • Fisher DB, Oparka KJ (1996) Post-phloem transport: principles and problems. J Exp Bot 47:1141–1154

    Article  PubMed  CAS  Google Scholar 

  • Fisher DB, Wang N (1995) Sucrose concentration gradients along the post-phloem transport pathway in the maternal tissues of developing wheat grains. Plant Physio 1109:587–592

    Google Scholar 

  • Fisher DB, Wu Y, Ku MSB (1992) Turnover of soluble proteins in the wheat sieve tube. Plant Physio l100:1433–1441

    Article  PubMed  CAS  Google Scholar 

  • Fujiwara T, Giesman-Cookmeyer D, Ding B, Lommel SA, Lucas WJ (1993) Cell-to-cell trafficking of macromolecules through plasmodesmata potentiated by the red clover necrotic mosaic virus movement protein. Plant Cell 5:1783–1794

    Article  PubMed  CAS  Google Scholar 

  • Galway ME, McCully ME (1987) The time course of the induction of callose in wounded pea roots. Protoplasma 139:77–91

    Article  Google Scholar 

  • Gamalei YV, van Bel AJE, Pakhomova MV, Sjutkina AV (1994) Effects of temperature on the conformation of the endoplasmic reticulum and on starch accumulation in leaves with the symplasmic minor-vein configuration. Planta 194:443–453

    Article  CAS  Google Scholar 

  • Garrill A, Findlay GP, Tyerman SD (1996) Mechanosensitive ion channels. In: Smallwood M, Knox JP, Bowles DJ (eds) Membranes: specialized functions in plants. Bios Scientific Publications, Oxford, pp 247–260

    Google Scholar 

  • Ghoshroy S, Lartey R, Sheng JS, Citovsky V (1997) Transport of proteins and nucleic acids through plasmodesmata. Annu Rev Plant Physio 148:25–48

    Google Scholar 

  • Glockmann C, Kollmann R (1996) Structure and development of cell connections in the phloem of Metasequoia glyptostroboides needles. Ultrastructural aspects of modified primary plasmodesmata in Strasburger cells. Protoplasma 193:191–203

    Article  Google Scholar 

  • Goodwin PB (1976) Physiological and electrophysiological evidence for intercellular communication in plant symplasts. In: Gunning BES, Robards AW (eds) Intercellular communication in plants: studies on plasmodesmata. Springer, Berlin Heidelberg New York, pp 121–129

    Google Scholar 

  • Goodwin PB (1983) Molecular size limit for movement in the symplast of the Elodea leaf. Planta 157:124–130

    Article  CAS  Google Scholar 

  • Goodwin PB, Shepherd V, Erwee MW (1990) Compartmentation of fluorescent tracers injected into the epidermal cells of Egeria densa leaves. Planta 181:129–136

    Article  CAS  Google Scholar 

  • Grabski S, de Feijter S, Schindler M (1993) Endoplasmic reticulum forms a dynamic continuum for lipid diffusion between contiguous soybean root cells. Plant Cell 5:25–38

    Article  PubMed  CAS  Google Scholar 

  • Grimm E, Bernhardt G, Rothe K, Jacob F (1990) Mechanism of sucrose retrieval along the phloem path—a kinetic approach. Planta 182:480–485

    Article  CAS  Google Scholar 

  • Grimm E, Jahnke S, Rothe K (1997) Photoassimilate translocation in the petiole of Cyclamen and Primula is independent of lateral retrieval. J Exp Bot 48:1087–1094

    Article  CAS  Google Scholar 

  • Haritatos E, Keller F, Turgeon R (1996) Raffinose oligosaccharide concentrations measured in individual cell and tissue types in Cucumis melo L leaves: implications for phloem loading. Planta 198:614–622

    Article  CAS  Google Scholar 

  • Helder RJ (1967) Translocation in Vallisneria spiralis. In: Schumacher W (ed) Translocation in plants. Encyclopedia of Plant Physiology XIII. Springer, Berlin Heidelberg New York, pp 20–43

    Google Scholar 

  • Holdaway-Clarke TL, Walker NA, Overall RL (1996) Measurement of the electrical resistance of plasmodesmata and membranes of corn suspension culture cells. Planta 199:537–544

    Article  Google Scholar 

  • Holthaus U, Schmitz K (1991) Distribution and immunolocalization of stachyose synthase in Cucumis melo L. Planta 185:479–486

    Article  CAS  Google Scholar 

  • Hughes JE, Gunning BES (1980) Glutaraldehyde-induced deposition of callose. Can J Bot 58:250–258

    Article  CAS  Google Scholar 

  • Ishiwatari Y, Honda C, Kawashima I, Nakamura S-I, Hirano H, Mori S, Fujiwara T, Hayashi H, Chino M (1995) Thioredoxin h is one of the major proteins in rice phloem sap. Planta 195:456–463

    Article  PubMed  CAS  Google Scholar 

  • Ishiwatari Y, Fujiwara T, McFarland KC, Nemoto K, Hayashi H, Chino M, Lucas WJ (1998) Rice phloem thioredoxin h has the capacity to mediate its own cell-to-cell transport through plasmodesmata. Planta 205:12–22

    Article  PubMed  CAS  Google Scholar 

  • Johnson RPC (1978) The microscopy of P-protein filaments in freeze-etched sieve pores. Planta 143:191–205

    Google Scholar 

  • Kauss H (1985) Callose biosynthesis as a Ca2+-regulated process and possible relations to the induction of other metabolic changes. J Cell Sci suppl 2:89–103

    PubMed  CAS  Google Scholar 

  • Kauss H (1996) Callose synthesis. In: Smallwood M, Knox JP, Bowles DJ (eds) Membranes: specialized functions in plants. Bios Scientific Publications, Oxford, pp 77–92

    Google Scholar 

  • Kempers R, van Bel AJE (1997) Symplasmic connections between sieve element and companion cell in the stem phloem of Vicia faba have a molecular exclusion limit of at least10 kDa. Planta 201:195–201

    Article  CAS  Google Scholar 

  • Kempers R, Prior DAM, van Bel AJE, Oparka KJ (1993) Plasmodesmata between sieve element and companion cell of extrafascicular stem phloem of Cucurbita maxima permit passage of 3-kDa fluorescent probes. Plant J 4:567–575

    Article  Google Scholar 

  • Kempers R, Ammerlaan A, van Bel AJE (1998) Symplasmic constriction and ultrastructural features of the sieve element/companion cell complex in the transport phloem of apoplasmically and symplasmically phloem-loading species. Plant Physiol 116:271–278

    Article  CAS  Google Scholar 

  • Kollmann R, Schumacher W (1962) Ãœber die Feinstruktur des Phloems von Metasequoia glyptostroboides and seine jahreszeitlichen Veränderungen. II Vergleichende Untersuchungen der plasmatischen Verbindungsbrücken in Phloemparenchymzellen and Siebzellen. Planta 58:366–386

    Article  Google Scholar 

  • Kollmann R, Schumacher W (1963) Ãœber die Feinstruktur des Phloems von Metasequoia glyptostroboides and seine jahreszeitlichen Veränderungen. IV Weitere Beobachtungen zum Feinbau der Plasmabrücken in den Siebzellen. Planta 60:360–389

    Article  Google Scholar 

  • Kühn C, Franceschi VR, Schulz A, Lemoine R, Frommer WB (1997) Macromolecular trafficking indicated by localization and turnover of sucrose transporters in enucleate sieve elements. Science 275:1298–1300

    Article  PubMed  Google Scholar 

  • Kwiatkowska M, Maszewski J (1986) Changes in the occurrence and ultrastructure of plasmodesmata in antheridia of Chara vulgaris L. during different stages of spermatogenesis. Protoplasma 132:179–188

    Article  Google Scholar 

  • Lazzaro MD, Thomson WW (1996) The vacuolar tubular continuum in living trichomes of chickpea (Cicer arietinum) provides a rapid means of solute delivery from base to tip. Protoplasma 193:181–190

    Article  Google Scholar 

  • Lehmann J (1981a) Quantitative Bestimmung von Nucleotiden and Zuckerphosphaten im Phloemexsudat von Cucurbita pepo L. Z Pflanzenphysiol 102:415–424

    CAS  Google Scholar 

  • Lehmann J (1981b) Versuch zur Bestimmung der Enzymverteilung zwischen Geleitzellen and Phloemparenchymzellen bei Cucurbita pepo. Z Pflanzenphysiol 103:323–333

    CAS  Google Scholar 

  • Lew RR (1994) Regulation of electric coupling between Arabidopsis root hairs. Planta 193:67–73

    Article  CAS  Google Scholar 

  • Lew RR (1996) Pressure regulation of the electrical properties of growing Arabidopsis thaliana L. root hairs. Plant-Physiol 112:1089–1100

    Article  PubMed  CAS  Google Scholar 

  • Lucas WJ (1995) Plasmodesmata: intercellular channels for macromolecular transport in plants. Curr Biol 7:673–680

    CAS  Google Scholar 

  • Lucas WJ, Ding B, van der Schoot C (1993) Plasmodesmata and the supracellular nature of plants. New Phytol 125:435–476

    Article  Google Scholar 

  • Lucas WJ, Bouché-Pillon S, Jackson D, Nguyen L, Baker L, Ding B, Hake S (1995) Selective trafficking of KNOTTED1 homeodomain protein and its mRNA through plasmodesmata. Science 270:1980–1983

    Article  PubMed  CAS  Google Scholar 

  • McLean BG, Hempel FD, Zambryski PC (1997) Plant intercellular communication via plasmodesmata. Plant Cell 9:1043–1054

    Article  PubMed  CAS  Google Scholar 

  • Meshcheryakov A, Steudle E, Komor E (1992) Gradients of turgor, osmotic pressure, and water potential in the cortex of the hypocotyl of growing Ricinus seedlings.. Plant Physio1 98:840–852

    Article  Google Scholar 

  • Noueiry AO, Lucas WJ, Gilbertson RL (1994) Two proteins of virus coordinate nuclear and plasmodesmal transport. Cell 76:925–932

    Article  PubMed  CAS  Google Scholar 

  • Offler CE, Patrick JW (1996) Solute transport dynamics of plasmodesmata in stems and roots. In: III Int Worksh on Basic and Applied Research in Plasmodesmal Biology, Israel, March 10–16,1996, pp 156–161

    Google Scholar 

  • Ohana P, Delmer DP, Volman G, Steffend J, Metthews D, Benziman M (1992) (3-Furfuryl-P-glucoside: an endogenous activator of higher plant UDP-glucose: (1–3)-glucan synthase. Plant Physiol 98:706–715

    Article  Google Scholar 

  • Ohana P, Benziman M, Delmer DP (1993) Stimulation of callose synthesis in vitro correlates with changes in intracellular distribution of the callose synthase activator β-furfuryl-β-glucoside. Plant Physiol 101:187–191

    PubMed  CAS  Google Scholar 

  • Olesen P, Robards AW (1990) The neck region in plasmodesmata: general architecture and some functional aspects. In: Robards AW, Jongsma H, Lucas WJ, Pitts J, Spray D (eds) Parallels in cell to cell junction in plants and animals. Springer, Berlin Heidelberg New York, pp 145–170

    Google Scholar 

  • Oparka KJ, Prior DAM (1992) Direct evidence for pressure-generated closure of plasmodesmata. Plant J 2:741–750

    Google Scholar 

  • Oparka KJ, Prior DAM, Crawford JW (1994) Behaviour of plasma membrane, cortical ER and plasmodesmata during plasmolysis of onion epidermal cells. Plant Cell Environ 17:163–171

    Article  Google Scholar 

  • Oparka KJ, Roberts AG, Prior DAM, Chapman S, Baulcombe D, Santa Cruz S (1995a) Imaging the green fluorescent protein in plants— viruses carry the torch. Protoplasma 189:133–141

    Article  CAS  Google Scholar 

  • Oparka KJ, Prior DAM, Wright KM (1995b) Symplastic communication between primary and developing lateral roots of Arabidopsis thaliana. J Exp Bot 46:187–197

    Article  CAS  Google Scholar 

  • Oparka KJ, Roberts AG, Roberts I M, Prior DAM, Santa Cruz S (1996) Viral coat protein is targeted to, but does not gate, plasmodesmata during cell-to-cell movement of potato virus X. Plant J 10:805–813

    Article  CAS  Google Scholar 

  • Overall RL, Blackman LM (1996) A model of the macromolecular structure of plasmodesmata. Trends Plant Sci 1:307–311

    Google Scholar 

  • Overall RL, Wolfe J, Gunning BES (1982) Intercellular communication in Azolla roots. I. Ultrastructure of plasmodesmata. Protoplasma 111:134–150

    Article  Google Scholar 

  • Patrick JW (1990) Sieve element unloading: cellular pathway, mechanism and control. Physiol Plant 78:298–308

    Article  Google Scholar 

  • Patrick JW (1997) Phloem unloading: sieve element unloading and post-phloem transport. Annu Rev Plant Physiol Plant Mol Bio1 48:191–222

    Article  Google Scholar 

  • Patrick JW, Offler CE (1995) Post-sieve element transport of sucrose in developing seeds. Aust J Physiol 22:681–702

    Article  CAS  Google Scholar 

  • Patrick JW, Offler CE (1996) Post sieve element transport of photoassimilates in sink regions. J Exp Bot 47:1165–1177

    Article  PubMed  CAS  Google Scholar 

  • Pickard WF, Minchin PEH (1990) The transient inhibition of phloem translocation in Phaseolus vulgaris by abrupt temperature drops, vibration, and electric shock. J Exp Bot 41:1361–1369

    Article  Google Scholar 

  • Pickard WF, Minchin PEH (1992a) The electroshock-induced inhibition of phloem translocation. J Exp Bot 43:409–417

    Article  Google Scholar 

  • Pickard WF Minchin PEH (1992b) The inhibition of phloem translocation by ammonia. J Exp Bot 43:51–54

    Article  CAS  Google Scholar 

  • Pickard WF, Minchin PEH (1992c) The nature of the short-term inhibition of stem translocation produced by abrupt stimuli. Aust J Plant Physiol 19:471–480

    Article  Google Scholar 

  • Pritchard J (1996) Aphid stylectomy reveals an osmotic step between sieve tube and cortical cells in barley roots. J Exp Bot 47:1519–1524

    Article  CAS  Google Scholar 

  • Radford J, White J (1996) Preliminary localisation of myosin to plasmodesmata. In: III Int Worksh on Basic and Applied Research in Plasmodesmal Biology, Israel, March 10–16,1996,. pp 37–38

    Google Scholar 

  • Radford JE, Vesk M, Overall RL. (1998) Callose deposition at plasmodesmata. Protoplasma 201:30–37

    Article  CAS  Google Scholar 

  • Robinson-Beers K, Evert RF (1991) Fine structure of plasmodesmata in mature leaves of sugarcane. Planta 184:307–318

    Google Scholar 

  • Sakuth T, Schobert C, Pecsvaradi A, Eichholz A, Komor E, Orlich G (1993) Specific proteins in the sieve-tube exudate of Ricinus communis L seedlings—separation, characterization and in vivo labelling. Planta 191:207–213

    Article  CAS  Google Scholar 

  • Schenk E (1974) Similar effects of cytokinins and carbonyl cyanide m-chlorophenylhydrazone (CCCP) on amino acid translocation in leaves of Sagittaria graminea Michx. Acta Bot Neer 123:739–746

    Google Scholar 

  • Schulz A (1986a) Wound phloem in transition to bundle phloem in primary roots of Pisum sativum L. I. Development of bundle-leaving wound-sieve tubes. Protoplasma 130:12–26

    Article  Google Scholar 

  • Schulz A (1986b) Wound phloem in transition to bundle phloem in primary roots of Pisum sativum L. II. The plasmatic contact between wound-sieve tubes and regular phloem. Protoplasma 130:27–40

    Article  Google Scholar 

  • Schulz A (1987) Sieve-element differentiation and fluoresceine translocation in wound phloem of pea roots after the complete severance of the stele. Planta 170:289–299

    Article  Google Scholar 

  • Schulz A (1990a) Conifers. In: Behnke H-D, Sjolund RD (eds) The sieve element— comparative structure, induction and development. Springer Berlin Heidelberg New York pp 63–88

    Google Scholar 

  • Schulz A (1990b) Wound-sieve elements. In: Behnke H-D, Sjolund RD (eds) The sieve element —comparative structure, induction and development. Springer, Berlin Heidelberg New York, pp 199–217

    Google Scholar 

  • Schulz A (1992) Living sieve cells of conifers as visualized by confocal, laser-scanning fluorescence microscopy. Protoplasma 166:153–164

    Article  Google Scholar 

  • Schulz A (1993) Sink strength— the importance of the distance between phloem and receiver cells. Plant Cell Environ 16:1031–1032

    Article  Google Scholar 

  • Schulz A (1994) Phloem transport and differential unloading in pea seedlings after source and sink manipulations. Planta 192:239–248

    Article  CAS  Google Scholar 

  • Schulz A (1995) Plasmodesmal widening accompanies the short-term increase in symplasmic phloem unloading of pea root tips under osmotic stress. Protoplasma 188:22–37

    Article  Google Scholar 

  • Schulz A (1996) Experimentelle Untersuchungen zur Entwicklung and Funktion der Assimilatleitbahnen in Höheren Pflanzen. Habil Thesis, Christian-Albrechts-Universität, Kiel

    Google Scholar 

  • Schulz A (1998) The phloem. Structure related to function. Prog Bot 59:429–472

    Google Scholar 

  • Schumacher W (1933) Untersuchungen uber die Wanderung des Fluoreszeins in den Siebr6hren. Jb Wiss Bot 77:685–732

    Google Scholar 

  • Schumacher W (1936) Untersuchungen uber die Wanderung des Fluoresceins in den Haaren von Cucurbita pepo. Jb Wiss Bot 82:507–533

    CAS  Google Scholar 

  • Sitte P (1998) Facts and concepts in cell compartmentation. Prog Bot 59:3–45

    Google Scholar 

  • Sjölund RD (1997) The phloem sieve element: a river runs through it. Plant Cell 9:1137–1146

    Article  PubMed  Google Scholar 

  • Sokolova M, Prefer D, Tacke E, Rohde W (1997) The potato leafroll virus17k movement protein is phosphorylated by a membrane-associated protein kinase from potato with biochemical features of protein kinase c. FEBS Lett 400:201–205

    Article  PubMed  CAS  Google Scholar 

  • Stadler R, Brandner J, Schulz A, Gahrtz M, Sauer N (1995) Phloem loading by the PmSUC2 sucrose carrier from Plantago major occurs into companion cells. Plant Cell 7:1545–1554

    Article  PubMed  CAS  Google Scholar 

  • Staehelin LA (1997) The plant ER: a dynamic organelle composed of a large number of discrete functional domains. Plant J 11:1151–1165

    Article  PubMed  CAS  Google Scholar 

  • Szederkenyi J, Komor E, Schobert C (1997) Cloning of the cDNA for glutaredoxin, an abundant sievetube exudate protein from Ricinus communis L and characterisation of the glutathione-dependent thiol-reduction system in sieve tubes. Planta 202:349–356

    Article  PubMed  CAS  Google Scholar 

  • Terry BR, Robards AW (1987) Hydrodynamic radius alone governs the mobility of molecules through plasmodesmata. Planta 171:145–157

    Article  CAS  Google Scholar 

  • Thorsch J, Esau K (1981 a) Changes in the endoplasmic reticulum during differentiation of a sieve element in Gossypium hirsutum. J Ultrastruct Res 74:183–194

    Article  PubMed  CAS  Google Scholar 

  • Thorsch J, Esau K (1981b) Nuclear degeneration and the association of endoplasmic reticulum with the nuclear envelope and microtubules in maturing sieve elements of Gossypium hirsutum. J Ultrastruct Res 74:195–204

    Article  CAS  Google Scholar 

  • Thorsch J, Esau K (1981c) Ultrastructural studies of protophloem sieve elements in Gossypium hirsutum. J Ultrastruct Res 75:339–351

    Article  CAS  Google Scholar 

  • Tilney LG, Cooke TJ, Connelly PS, Tilney MS (1991) The structure of plasmodesmata as revealed by plasmolysis, detergent extraction, and protease digestion. J Cell Biol 112:739–747

    Article  PubMed  CAS  Google Scholar 

  • Trebacz K, Fensom D (1989) The uptake and transport of 14C in cells of Conocephalum conicum L. in light. J Exp Bot 40:1089–1092

    Article  CAS  Google Scholar 

  • Tucker EB (1982) Translocation in the staminal hairs of Setcreasea purpurea. I. A study of cell ultrastructure and cell-to-cell passage of molecular probes. Protoplasma 113:193–201

    Article  CAS  Google Scholar 

  • Tucker EB (1988) Inositol bisphosphate and inositol trisphosphate inhibit cell-to-cell passage of carboxyfluorescein in staminal hairs of Setcreasea purpurea. Planta 174:358–363

    Article  CAS  Google Scholar 

  • Tucker EB (1990) Calcium-loaded1,2-bis(2-aminophenoxy)ethane-N, N, N′, N′ —tetra acetic acid blocks cell-to-cell diffusion of carboxyfluorescein in staminal hairs of Setcreasea purpurea. Planta 182:34–38

    CAS  Google Scholar 

  • Tucker EB (1993) Azide treatment enhances cell-to-cell diffusion in staminal hairs of Setcreasea purpurea. Protoplasma 174:45–49

    Article  CAS  Google Scholar 

  • Tucker EB, Boss WF (1996) Mastoparan induced intracellular Ca2+ fluxes may regulate cell-to-cell communication in plants. Plant Physiol 111:459–467

    PubMed  CAS  Google Scholar 

  • Tucker EB, Tucker JE (1993) Cell-to-cell diffusion selectivity in staminal hairs of Setcreasea purpurea. Protoplasma 174:36–44

    Article  Google Scholar 

  • Turgeon R (1996) Phloem loading and plasmodesmata. Trends Plant Sci 1:418–423

    Article  Google Scholar 

  • Turner A, Wells B, Roberts K (1994) Plasmodesmata of maize root tips: structure and composition. J Cell Sci 107:3351–3361

    PubMed  CAS  Google Scholar 

  • van Bel AJE (1993a) Strategies of phloem loading. Annu Rev Plant Physiol Plant Mol Biol 44:253–281

    Article  Google Scholar 

  • van Bel AJE (1993b) The transport phloem. Specifics of its functioning. Progr Bot 54:134–150

    Google Scholar 

  • van Bel AJE (1996) Interaction between sieve element and companion cell and the consequences for photoassimilate distribution. Two structural hardware frames with associated physiological software packages in dicotyledons? J Exp Bot 47:1129–1140

    Article  PubMed  Google Scholar 

  • van Bel AJE, Kempers R (1997) The pore/plasmodesm unit; key element in the interplay between sieve element and companion cell. Prog Bot 58:278–291

    Google Scholar 

  • van Bel AJE, van Rijen HVM (1994) Microelectrode-recorded development of the symplasmic autonomy of the sieve element/companion cell complex in the stem phloem of Lupinusluteus L. Planta 192:165–175

    Article  Google Scholar 

  • Waigmann E, Zambryski P (1995) Tobacco mosaic virus movement protein mediated protein transport between trichome cells. Plant Cell 7:2069–2079

    Article  PubMed  CAS  Google Scholar 

  • Waigmann E, Lucas WJ, Citovsky V, Zambryski P (1994) Direct functional assay for tobacco mosaic virus cell-to-cell movement protein and identification of a domain involved in increasing plasmodesmal permeability. Proc Natl Acad Sci USA 91:1433–1437

    Article  PubMed  CAS  Google Scholar 

  • Waigmann E, Turner A, Peart J, Roberts K, Zymbryski P (1997) Ultrastructural analysis of leaf trichome plasmodesmata reveals major differences from mesophyll plasmodesmata. Planta 203:75–84

    PubMed  CAS  Google Scholar 

  • Wang N, Fisher DB (1994a) Monitoring phloem unloading and post-phloem transport by microperfusion of attached wheat grains. Plant Physiol 104:7–16

    PubMed  CAS  Google Scholar 

  • Wang N, Fisher DB (1994b) The use of fluorescent tracers to characterize the post-phloem transport in maternal tissue of developing wheat grains. Plant Physio1 104:17–27

    Google Scholar 

  • Warmbrodt RD (1987) Solute concentrations in the phloem and apex of the root of Zea mays. Am J Bot 74:394–402

    Article  Google Scholar 

  • Watada RS, Wergin WP (1997) Characterization of the cell wall microdomain surrounding plasmodesmata in apple fruit. Plant Physiol 114:539–547

    PubMed  Google Scholar 

  • White PJ (1997) Cation channels in the plasma membrane of rye roots. J Exp Bot 48:499–514

    Article  PubMed  CAS  Google Scholar 

  • White RG, Badelt K, Overall RL, Vesk M (1994) Actin associated with plasmodesmata. Protoplasma 180:169–184

    Article  CAS  Google Scholar 

  • Wolf S, Lucas WJ (1994) Virus movement. proteins and other molecular probes of plasmodesmal function. Plant Cell Environ 17:573–585

    Article  CAS  Google Scholar 

  • Wolf S, Deom CM, Beachy RN, Lucas WJ (1989) Movement protein of tobacco mosaic virus modifies plasmodesmatal size exclusion limit. Science 246:377–379

    Article  PubMed  CAS  Google Scholar 

  • Wright KM, Oparka KJ (1996) The fluorescent probe HPTS as a phloem mobile, symplastic tracer: an evaluation using confocal laser scanning microscopy. J Exp Bot 47:439–445

    Article  CAS  Google Scholar 

  • Wright KM, Oparka KJ (1997) Metabolic inhibitors induce symplastic movement of solutes from the transport phloem of Arabidopsis roots. J Exp Bot 48:1807–1814

    CAS  Google Scholar 

  • Yahalom A, Warmbrodt RD, Laird DW, Traub O, Revel J-P, Willecke K, Epel BL (1991) Maize mesocotyl plasmodesmata proteins cross-react with connexin gap junction protein antibodies. Plant Cell 3:407–417

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schulz, A. (1999). Physiological Control of Plasmodesmal Gating. In: van Bel, A.J.E., Van Kesteren, W.J.P. (eds) Plasmodesmata. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60035-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60035-7_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65169-7

  • Online ISBN: 978-3-642-60035-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics