Skip to main content

What Can Synergetics Contribute to the Understanding of Brain Functioning?

  • Chapter
Analysis of Neurophysiological Brain Functioning

Part of the book series: Springer Series in Synergetics ((SSSYN))

Abstract

At present we witness the growth of the number of institutions that deal with EEG and MEG measurements. This chapter, and moreover the whole book is concerned with the analysis of EEG and MEG data. In these experiments, electric and/or magnetic fields are measured by means of arrays of sensors. The measurements consist in recording time-series of the corresponding fields. The spatial resolution is given by the separation of the sensors on the scalp. Because the temporal resolution is high and modern equipment uses numerous sensors, an enormous amount of data becomes available. To reduce the amount of information, methods such as filtering of frequency bands and/or data averaging are frequently used. More recently it has been questioned (e.g. by P. Tass, cf. his chapter in this book) whether averaging is permissible, because important correlations might be obscured. This problem probably does not occur, however, if external pacemakers are used, as in the Kelso experiments (cf. his contribution to this book).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Haken, H.: Principles of Brain Functioning: A Synergetic Approach to Brain Activity, Behavior and Cognition, Springer, Berlin (1996)

    MATH  Google Scholar 

  2. Haken, H.: Synergetics. An Introduction, 3rd ed., Springer, Berlin (1983)

    MATH  Google Scholar 

  3. Haken, H.: Advanced Synergetics, 2nd ed., Springer, Berlin (1987)

    Google Scholar 

  4. Uhl, C., Friedrich, R., Haken, H.: Reconstruction of spatio-temporal signals of complex systems, Z. Phys. B 92, 211–219 (1993)

    Article  ADS  Google Scholar 

  5. Uhl, C., Friedrich, R., Haken, H.: Analysis of spatio-temporal signals of complex systems, Phys. Rev. E, Vol. 51, No. 5 (1995)

    Google Scholar 

  6. Friedrich, R., Uhl, C.: Spatio-temporal analysis of human electroencephalo¬grams: Petit-mal epilepsy, Physica D 98, 171 – 182 (1996)

    Article  MATH  Google Scholar 

  7. Kuramoto, Y., Tsusuki, T.: Prog. Theor. Phys. 52, 1399 (1974)

    Article  ADS  Google Scholar 

  8. Tass, P.: Phase and frequency shifts in a population of phase oscillators, Phys. Rev. E. 56, 2043 (1997). Synchronized oscillations in the visual cortex - a synergetic model, Biol. Cybern. 74, 31–39 (1997). Synchronization in networks of limit cycle oscillators, Z. Phys. B 100, 303 – 320 (1996)

    ADS  Google Scholar 

  9. Singer, W., Gray, C.M., König, P.: Synchronization of oscillatory responses in visual cortex: A plausible mechanism for scene segmentation. In: Synergetics of Cognition, Haken, H., Stadler, M. (eds.), Springer, Berlin (1990)

    Google Scholar 

  10. Eckhorn, R., Reitböck, H.J.: Stimulus-specific synchronization in cat visual cortex and its possible role in visual pattern recognition. In: Synergetics of Cognition, Haken, H., Stadler, M. (eds.), Springer, Berlin (1990)

    Google Scholar 

  11. Beurle, R.L.: Properties of a mass of cells capable of regenerating pulses, Philos. Trans. Soc. London, Ser. A 240, 55 – 94 (1956)

    Article  ADS  Google Scholar 

  12. Griffith, J.S.: A field theory of neural nets: I: Derivation of field equations, Bull. Math. Biophys., Vol. 25, 111–120 (1963), and II: Properties of field equations, Bull. Math. Biophys., Vol. 27, 187 – 195 (1965)

    MathSciNet  MATH  Google Scholar 

  13. Wilson, H.R., Cowan, J.D.: Excitatory and inhibitory interactions in localized populations of model neurons, Biophysical Journal, Vol. 12, 1 – 24 (1972)

    Article  ADS  Google Scholar 

  14. Wilson, H.R., Cowan, J.D.: A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue, Kybernetik 13, 55 – 80 (1973)

    Article  MATH  Google Scholar 

  15. Nunez, P.L.: The brain wave equation: A model for the EEG, Mathematical Biosciences 21, 279 – 297 (1974)

    Article  MATH  Google Scholar 

  16. Nunez, P.L.: Electric fields of the brain, Oxford University Press (1981)

    Google Scholar 

  17. Nunez, P.L.: Neocortical dynamics and human EEG rhythms, Oxford University Press (1995)

    Google Scholar 

  18. McCulloch, W., Pitts, W.: A logical calculus of the ideas immanent in nervous activity, Bulletin of Math. Biophysics 5, 115 – 133 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  19. Freeman, W. J.: Mass action in the nervous system, Academic Press, New York (1975)

    Google Scholar 

  20. Freeman, W.J.: Tutorial on neurobiology: From single neurons to brain chaos, International Journal of Bifurcation and Chaos, Vol. 2, No. 3, 451 – 482 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  21. Abeles, M.: Corticonics, Cambridge University Press (1991)

    Google Scholar 

  22. Braitenberg, V., Schüz, A.: Anatomy of the cortex. Statistics and geometry, Springer, Berlin (1991)

    Google Scholar 

  23. Miller, R.: Representation of brief temporal patterns, Hebbian synapses, and the left-hemisphere dominance for phoneme recognition, Psychobiology, Vol. 15 (3), 241 – 247 (1987)

    ADS  Google Scholar 

  24. Cowan, J.D.: Brain mechanisms underlying visual hallucinations, in: Paines, D. (ed.), Emerging Syntheses in Science, Addison Wesley, 123–131 (1987)

    Google Scholar 

  25. Ermentrout, G.B., Cowan, J.D.: A mathematical theory of visual hallucination patterns, Biol. Cybern. 34, 137 – 150 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tass, P.: Cortical pattern formation during visual hallucinations, J. Biol. Phys. 21, 177 – 210 (1995)

    Article  Google Scholar 

  27. Tass, P.: Oscillatory cortical activity during visual hallucination, J. Biol. Phys. 23, 21 – 66 (1997)

    Article  Google Scholar 

  28. Hopfìeld, J.J.: Neural networks and physical systems with emergent collective computational abilities, Proc. Natl. Acad. Sci. 79, 2554 (1982)

    Article  ADS  Google Scholar 

  29. Kohonen, T.: Associative memory and s elf-organization, 2nd ed., Springer, Berlin (1987)

    Google Scholar 

  30. Jirsa, V.K.: Thesis, Modellierung und Rekonstruktion raumzeitlicher Dynamik im Gehirn, Harri Deutsch, Frankfurt a. M. (1996)

    Google Scholar 

  31. Jirsa, V.K., Haken, H.: A field theory of electromagnetic brain activity, Phys. Rev. Lett., 22 July (1996)

    Google Scholar 

  32. Jirsa, V.K., Haken, H.: A derivation of a macroscopic field theory of the brain from the quasi-microscopic neural dynamics, Physica D 99, 503 – 526 (1997)

    Article  MATH  Google Scholar 

  33. Kelso, J.A.S., Bressier, S.L., Buchanan, S., DeGuzman, G.C., Ding, M., Fuchs, A., Holroyd, T.: A phase transition in human brain and behavior, Physics Letters A 169, 134 – 144 (1992)

    Article  ADS  Google Scholar 

  34. Fuchs, A., Kelso, J.A.S., Haken, H.: Phase transitions in the human brain: Spatial mode dynamics, International Journal of Bifurcation and Chaos, 2, 917 – 939 (1992)

    Article  MATH  Google Scholar 

  35. Jirsa, V.K., Friedrich, R., Haken, H., Kelso, J.A.S.: A theoretical model of phase transitions in the human brain, Biol. Cybern. 71, 27 – 35 (1994)

    Article  MATH  Google Scholar 

  36. Jirsa, V.K., Friedrich, R., Haken, H.: Reconstruction of the spatio-temporal dynamics of a human magnetoencephalogram, Physica D 89, 100 – 122 (1995)

    Article  MATH  Google Scholar 

  37. Haken, H.: Laser Theory, Springer, Berlin (1970)

    Google Scholar 

  38. Haken, H.: Light, vol. 2, North-Holland (1985)

    Google Scholar 

  39. Schöner, G., Haken, H., Kelso, J.A.S.: A stochastic theory of phase transitions in human hand movement, Biol. Cybernectics 53, 247 – 257 (1986)

    Article  MATH  Google Scholar 

  40. Kelso, J.A.S., Scholz, J.P., Schöner, G.: Non-equilibrium phase-transitions in coordinated biological motion: critical fluctuations, Physics Letters A 118, 279 – 284 (1986)

    Article  ADS  Google Scholar 

  41. Haken, H.: Information and self-organization, Springer, Berlin (1988)

    MATH  Google Scholar 

  42. Borland, L.: Ein Verfahren zur Bestimmung der Dynamik stochastischer Prozesse, Thesis Stuttgart (1993). Learning the Dynamics of Two-Dimensional Stochastic Markov Processes, Open Systems & Information Dynamics, Vol. 1, No. 3 (1992). On the constraints necessary for macroscopic prediction of time- dependent stochastic processes, Reports on Mathematical Physics, Vol. 33, No. 1/2 (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Haken, H. (1999). What Can Synergetics Contribute to the Understanding of Brain Functioning?. In: Uhl, C. (eds) Analysis of Neurophysiological Brain Functioning. Springer Series in Synergetics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60007-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60007-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64219-7

  • Online ISBN: 978-3-642-60007-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics