Skip to main content

Imaging of Cytosolic Sodium and pH Using SBFI and BCECF

  • Chapter
Imaging Living Cells

Part of the book series: Springer Lab Manual ((SLM))

  • 949 Accesses

Abstract

Although a great deal of attention has been focused on how the cytosolic Ca2+ concentration ([Ca2+]c) is temporally and spatially regulated within cells, tight regulation of other key ions is vital to the survival and normal function of cells. In particular, a considerable amount of their energy (20–70%) is expended via the plasma membrane Na+/K+ATPase to ensure that the cytosolic Na+ concentration ([Na+]c) is relatively low compared with that in the extracellular milieu (≈10 mM and 140 mM respectively). Correspondingly cytosolic K+ ([K+]c) is kept high compared with the extracellular K+ ([K+]o; 130 mM versus 3–5 mM respectively). Both excitable and non-excitable cells use these transmembrane gradients of Na+ and K+ to great effect. The influx of Na+ down its concentration gradient is coupled to the extrusion of Ca2+ and H+ via the Na+:Ca2+ and Na+:H+ exchangers,1,2 to the uptake of ions, sugars and amino acids via co-transporters,3 and to the rapid changes in membrane potential which propagate electrochemical signals in excitable cells.4 These latter depolarisations ultimately lead to elevation of [Ca2+]c in the presynaptic terminals, neuromuscular junctions and cell bodies via the opening of voltage-gated Ca2+ channels.5

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen TJA and Noble D Reuter H. Sodium-calcium exchange. Oxford Scientific Publications. 1989.

    Google Scholar 

  2. Demauraux N and Grinstein S. Na+/H+ antiport: modulation by ATP and role in cell volume regulation. J Exp Biol 1994; 196:389–404.

    Google Scholar 

  3. Harvey WR and Nelson N. Transporters 1994; J Exp Biol: 196.

    Google Scholar 

  4. Hodgkin AL and Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 1952; 117:500–544.

    PubMed  CAS  Google Scholar 

  5. Tsien RW, Lipscombe D, Madison DV et al. Multiple types of Ca2+ channel and their selective modulation. Trends Neurosci 1987; 11:431–438.

    Article  Google Scholar 

  6. Glynn IM. The Na, K-transporting adenosine trisphosphatase. In: Maronosi AM, ed. The enzymes of biological membranes. 2nd ed. New York. Plenum Press,1985:35–114.

    Google Scholar 

  7. Thomas RC. In: Ion sensitive microelectrodes and how to use them. London. Academic Press. 1978.

    Google Scholar 

  8. Aickin CC. Investigation of factors affecting the intracellular sodium activity in the smooth muscle cells of guinea-pig ureter. J Physiol 1987; 385:483–505.

    PubMed  CAS  Google Scholar 

  9. Slack C and Warner AE. The distibution of sodium and potassium in anphibian embryos during early development. J Physiol 1973; 232:297–312.

    PubMed  CAS  Google Scholar 

  10. Kao JPY. Practical aspects of measuring [Ca2+] with fluorescent indicators. Methods Cell Biol 1994; 40:155–181.

    Article  PubMed  CAS  Google Scholar 

  11. Springer CS Jnr. Transmembrane ion pumping: High resolution cation NMR spectroscopy. Ann N Y Acad Sci USA 1987; 508:130–148.

    Article  Google Scholar 

  12. Smith GA, Morris PG, Hesketh R et al. Design of an indicator of intracellular free Na+ using 19F-NMR. Biochim Biophys Acta. 1986; 889:72–83.

    Article  PubMed  CAS  Google Scholar 

  13. Minta A and Tsien RY. Fluorescent indicators for cytosolic sodium. J Biol Chem. 1989; 264:19449–19457.

    PubMed  CAS  Google Scholar 

  14. Grynkiewicz G, Poenie M and Tsien RY. A new generation of Ca2+ indicators with greatly improved fluorescent properties. J Biol Chem 1985; 260:3440–3450.

    PubMed  CAS  Google Scholar 

  15. Haughland RP ed. Handbook of Fluorescent Probes and Research Chemicals 6th ed. Molcular Probes 1996.

    Google Scholar 

  16. Simpson AWM and Rink TJ. Elevation of pHi is not an essential step in calcium mobilisation in fura-2-loaded human platelets. FEBS Lett 1987; 222:144–148.

    Article  PubMed  CAS  Google Scholar 

  17. Morris SJ Weigmann TB Welling LW et al. Rapid simultaneous estimation of intracellular calcium and pH. Methods in Cell Biology 1994; 40:183–220.

    Article  PubMed  CAS  Google Scholar 

  18. Roe MW Lemasters JJ Herman B. Assessment of fura-2 for measurements of cytosolic free calcium. Cell Calcium 1990; 11:63–73.

    Article  PubMed  CAS  Google Scholar 

  19. Di Virgilio F, Steinberg TH and Silverstein SC. Inhibition of fura-2 sequestration and secretion with organic anion transport blockers. Cell Calcium 1990; 11:57–62.

    Article  PubMed  Google Scholar 

  20. Homolya L, Hollo Z, Germann UA et al. Fluorescent cellular indicators are extruded by the multidrug resistance protein. J Biol Chem 1993; 268:21493–21496.

    PubMed  CAS  Google Scholar 

  21. Murphy HS, Maroughi M, Till GO and Ward PA. Phorbol-stimulated influx of extracellular calcium in rat pulmonary artery endothelial cells. Am J Physiol 1994; 267:L145–L151.

    PubMed  CAS  Google Scholar 

  22. Harootunian A, Kao JPY, Eckert BK and Tsien RY. Fluorescent ratio imaging of cytosolic free Na+ in individual fibroblasts and lymphocytes. J Biol Chem 1989; 264:19458–19467.

    PubMed  CAS  Google Scholar 

  23. Moore EDW and Fay FS. Isoprotenerol stimulates rapid extrusion of sodium from isolated smooth muscle cells. Proc Natl Acad Sci USA 1993; 90:8058–8062.

    Article  PubMed  CAS  Google Scholar 

  24. Donoso P, Mill JG, O’Neill SCO et al. Fluorescence measurements of cytoplasmic and mitochondrial sodium concentration in rat ventricular myocytes. J Physiol 1992; 448:493–509.

    PubMed  CAS  Google Scholar 

  25. Rink TJ Montecucco C Hesketh TR et al. Lymphocyte membrane potential measured with fluorescent probes. Biochim Biophys Acta 1980; 595:15–30.

    Article  PubMed  CAS  Google Scholar 

  26. Negulescu PA, Harootunian A, Tsien RY et al. Fluorescence measurements of cytosolic free Na+ concentration, influx and efflux in gastric cells. Cell Regulation 1990; 1:259–268.

    PubMed  CAS  Google Scholar 

  27. David G, Barrett JN, and Barrett EF. Spatiotemporal gradients of intra-axonal [Na+] after transection and resealing in lizard peripheral myelinated axons. J Physiol 1997; 498:295–308

    PubMed  CAS  Google Scholar 

  28. Sage SO, Rink TJ and Mahaut-Smith MP. Resting and ADP-evoked changes in cytosolic free sodium concentration in human platelets loaded with the indicator SBFI. J Physiol 1991; 441:559–573.

    PubMed  CAS  Google Scholar 

  29. Nuccitelli R and Deamer DW. Intracellular pH: Its measurement, regulation and utilization in cellular functions. Alan R Liss Inc New York., 1982.

    Google Scholar 

  30. Ganz MB, Boyarsky G, Sterzel RB et al. Arginine vasopressin enhances pHi regulation in the presence of HCO3 by stimulating three acid-base transport systems. Nature 1989; 337:648–651.

    Article  PubMed  CAS  Google Scholar 

  31. Paradiso AM, Negulescu PA and Machen TE. Na+-H+ and Cl-OH (HCO3) exchange in gastric glands. Am J Physiol. 1986; 250:G524–G534.

    PubMed  CAS  Google Scholar 

  32. Bright GR, Whitaker JE, Haughland RP et al. Heterogeneity of the changes in cytoplasmic pH upon serum stimulation of quiescent fibroblasts. J Cellular Physiol 1989; 141:410–419.

    Article  CAS  Google Scholar 

  33. Lattanzio FA and Bartschat DK. The effect of pH on rate constants ion selectivity and thermodynamic properties of fluorescent calcium indicators as determined with chelex-100 and EDTA buffer systems. Biochem Biophys Res Commun 1991; 177:184–191.

    Article  PubMed  CAS  Google Scholar 

  34. Gandelman O, Allue I, Bowers K and Cobbold PH. Cytoplasmic factors that affect the intensity and stability of bioluminescence from firefly luciferase in living cells. J Biolumin Chemilumin 1994; 9:363–371.

    Article  PubMed  CAS  Google Scholar 

  35. Rink TJ, Tsien RY and Pozzan T. Cytoplasmic pH and free Mg2+ in lymphocytes J Cell Biol 1982; 95:189–196.

    Article  PubMed  CAS  Google Scholar 

  36. Bright GR, Fisher GW, Rogowska J et al. Fluorescence ratio imaging microscopy: Temporal and spatial measurements of cytoplasmic pH. J Cell Biol 1987; 104:1019–1033.

    Article  PubMed  CAS  Google Scholar 

  37. Chance B, Schoener B, Oshino R et al. Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples. J Biol Chem 1979; 254:4764–4771.

    PubMed  CAS  Google Scholar 

  38. Simpson AWM and Ashley CC. Simultaneous measurement of intracellular free calcium ([Ca2+]c) and intracellular pH (pHi) using dual-loading of fura-2 and SNARF-1. J Physiol 1990; 430:10P.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alec W. M. Simpson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Simpson, A.W.M., Sharma, R.V. (1999). Imaging of Cytosolic Sodium and pH Using SBFI and BCECF. In: Rizzuto, R., Fasolato, C. (eds) Imaging Living Cells. Springer Lab Manual. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60003-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60003-6_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65051-5

  • Online ISBN: 978-3-642-60003-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics