Skip to main content

Imaging Calcium in the Cytoplasm and in Organelles with Fluorescent Dyes: General Principles

  • Chapter
Imaging Living Cells

Part of the book series: Springer Lab Manual ((SLM))

Abstract

The notion that Ca2+ might play an important role in cell function became apparent only a little more than 100 years ago, when Ringer observed that Ca2+ ions were essential for the normal contraction of the frog heart. In 1957 Hodgkin and Keynes used 45Ca2+ to trace the movements of the ion in the squid giant axon, and since that time many investigators have employed isotopes to examine Ca2+ fluxes in cells, tissues, or whole organs. These studies provided an important framework for future developments in the Ca2+ transport field, and continue to give important information to this day. Efforts to develop effective probes for measuring free cytosolic Ca2+, however, came much later, and were hampered in part by the lack of appreciation of just how low basal cytoplasmic Ca2+ could be. In fact, the tools for reproducing physiological Ca2+ concentrations ([Ca2+]) such as those found in the cytoplasm were unavailable until the introduction of Ca2+ selective chelators such as EGTA in 1964.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blinks JR. Use of calcium-regulated photoproteins as intracellular Ca2+ indicators. Methods Enzymol., 1989; 172: 164–203

    Article  PubMed  CAS  Google Scholar 

  2. Rapp PE, Berridge MJ. The control of transepithelial potential oscillations in the salivary gland of Calliphora erythocephala. J Exp Biol 1981; 93:119–132.

    CAS  Google Scholar 

  3. Tsien RY. New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry 1980; 19:2396–2404

    Article  PubMed  CAS  Google Scholar 

  4. Grynkiewicz G, Poenie M, Tsien RY. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 1985; 260:3440–3450.

    PubMed  CAS  Google Scholar 

  5. Minta A, Kao JP, Tsien RY. Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores. J Biol Chem. 1989; 264(14): 8171–8178.

    PubMed  CAS  Google Scholar 

  6. Berridge MJ, Irvine RF. Inositol phosphates and cell signalling. Nature 1989; 341(6239): 197–205

    Article  PubMed  CAS  Google Scholar 

  7. Woods NM, Cuthbertson KS. Repetitive transient rises in cytoplasmic free calcium in hormone stimulated hepatocytes. Nature 1986; 319:600–602.

    Article  PubMed  CAS  Google Scholar 

  8. Roe MW, Lemasters JJ, Herman B. Assessment of Fura-2 for measurements of cytosolic free calcium. Cell Calcium 1990; 11:63–73.

    Article  PubMed  CAS  Google Scholar 

  9. Bolsover S, Silver RA. Artifacts in calcium measurement: recognition and remedies. Trends in Cell Biol 1991; 1:71–74.

    Article  CAS  Google Scholar 

  10. Richardson A, Taylor CW. Effects of Ca2+ chelators on purified inositol 1,4,5-trisphosphate (InsP3) receptors and InsP3-stimulated Ca2+ mobilization. J Biol Chem 1993: 268:11528–11533.

    PubMed  CAS  Google Scholar 

  11. Busa, WB. Spectral characterization of the effect of viscosity on Fura-2 fluorescence: excitation wavelength optimization abolishes the viscosity artifact. Cell Calcium 1992; 13:313–319.

    Article  PubMed  CAS  Google Scholar 

  12. Nitschke R, Wilhelm S, Borlinghaus R et al. A modified confocal laser scanning microscope allows fast ultraviolet ratio imaging of intracellular Ca2+ activity using Fura-2. Pflügers Arch 1997; 433(5): 653–663.

    Article  PubMed  CAS  Google Scholar 

  13. Iatridou H, Foukaraki E, Kuhn M et al. The development of a new family of intracellular calcium probes. Cell Calcium 1994; 15: 190–198.

    Article  PubMed  CAS  Google Scholar 

  14. Zhao M, Hollingsworth S, Baylor SM. Properties of tri-and tetracar-boxylate Ca2+ indicators in frog skeletal muscle. Biophys J 1996; 70(2):896–916.

    Article  PubMed  CAS  Google Scholar 

  15. Neher E, Zucker RS. Multiple calcium-dependent processes related to secretion in bovine chromaffin cells. Neuron 1993; 10(1): 21–30.

    Article  PubMed  CAS  Google Scholar 

  16. Klein MG, Simon BJ, Szucs G et al. Simultaneous recording of calcium transients in skeletal muscle using high-and low-affinity calcium indicators. Biophysical J 1988; 53: 971–988.

    Article  CAS  Google Scholar 

  17. Hofer AM, Machen TE. Technique for in situ measurement of calcium in intracellular InsP3-sensitive stores using the fluorescent indicator mag-fura-2. Proc. Natl. Acad. Sci. USA. 1993; 90:2598–2602.

    Article  PubMed  CAS  Google Scholar 

  18. Tse FW, Tse A, Hille B. Cyclic Ca2+ changes in intracellular stores of gonadotropes during gonadotropin-releasing hormone-stimulated Ca2+ oscillations. Proc. Natl. Acad. Sci. USA 1994; 91: 9750–9754.

    Article  PubMed  CAS  Google Scholar 

  19. Hirose K, Iino M. Heterogeneity of channel density in inositol-1,4,5-trisphosphate-sensitive Ca2+ stores. Nature 1994; 372:791–794.

    PubMed  CAS  Google Scholar 

  20. Hajnóczky G, Thomas AP. Minimal requirements for calcium oscillations driven by the IP3 receptor. EMBO J 1997;16(12):3533–3543.

    Article  PubMed  Google Scholar 

  21. Chatton J-Y, Liu H, Stucki JW. Simultaneous measurement of Ca2+ in the intracellular stores and cytosol of hepatocytes during hormone-induced Ca2+ oscillations. FEBS Letters 1995; 368:165–168.

    Article  PubMed  CAS  Google Scholar 

  22. Negulescu PA, Machen TE. Intracellular ion activites and membrane transport in parietal cells measured with fluorescent dyes. Methods in Enzymology 1990;192:38–82

    Article  PubMed  CAS  Google Scholar 

  23. Vorndran, C., Minta, A., and Poenie, M. (1995) New fluorescent calcium indicators designed for cytosolic retention or measuring calcium near membranes. Biophysical J. 69: 2112–2124.

    Article  CAS  Google Scholar 

  24. Tsien RY, Pozzan T. Measurement of cytosolic Ca2+ with Quin-2 Methods Enzymol 1989;172:230–262.

    Article  PubMed  CAS  Google Scholar 

  25. Nuccitelli, R. (ed.) (1994) A practical guide to the study of calcium in living cells. In “Methods in Cell Biology” Vol. 40. Academic Press, San Diego.

    Google Scholar 

  26. Scheenen, WJJM, Hofer AM, Pozzan T. (in press) Intracellular measurement of calcium using fluorescent probes. in “Cell Biology: A Laboratory Handbook” (J.E. Celis, editor) Academic Press, New York, pp. 363–374.

    Google Scholar 

  27. DiVirgilio F, Fasolato C, Steinberg TH. Inhibitors of membrane transport system for organic anions block fura-2 excretion from PC12 and N2A cells. Biochem J. 1988; 256(3): 959–963.

    CAS  Google Scholar 

  28. Ince C, VanDissel JT, Diesselhoff MC. A teflon culture dish for high magnification microscopy and measurements in single cells. Pflügers Arch 1985; 403:240–244.

    Article  PubMed  CAS  Google Scholar 

  29. Tanimura A., Turner RJ. Inositol 1,4,5-trisphosphate-dependent oscillations of luminal [Ca2+] in permeabilized HSY cells. J Biol Chem 1996; 271:30904–30908.

    Article  PubMed  CAS  Google Scholar 

  30. Montero M, Brini M, Marsault R et al. Monitoring dynamic changes in free Ca2+ concentration in the endoplasmic reticulum of intact cells. EMBO J 1995; 14:5467–5475.

    PubMed  CAS  Google Scholar 

  31. Hofer, AM. (in press) How to measure free [Ca2+] changes in agonist-sensitive internal stores using compartmentalized fluorescent indicators. in “Methods in Molecular Biology: Calcium Signaling Protocols” (D.G. Lambert, editor) Humana Press, New Jersey, USA. pp.......

    Google Scholar 

  32. Hofer AM, Fasolato C, Pozzan T. Capacitative Ca2+ entry is closely linked to the filling state of internal Ca2+ stores: a study using simultaneous measurements of Icrac and intraluminal [Ca2+]. (in press)

    Google Scholar 

  33. Golovina VA, Blaustein MP. Spatially and functionally distinct Ca2+ stores in sarcoplasmic and endoplasmic reticulum. Science 1997; 275(5306):1643–1648.

    Article  PubMed  CAS  Google Scholar 

  34. Hofer AM, Landolfi B, Debellis L. et al. Single cell and subcellular resolution of free [Ca2+] dynamics in agonist-sensitive stores of intact cells. (manuscript submitted)

    Google Scholar 

  35. Raju B, Murphy E, Levy LA et al. A fluorescent indicator for measuring cytosolic free magnesium. Am J Physiol 1989; 256:C540–C548.

    PubMed  CAS  Google Scholar 

  36. Hofer AM, Machen TE. Direct measurement of free Ca2+ in organelles of gastric epithelial cells. Am J Physiol 1994; 267: G442–G451.

    PubMed  CAS  Google Scholar 

  37. Hofer AM, Schlue WR, Curci S et al. Spatial distribution and quantitation of free luminal [Ca2+] within the InsP3-sensitive internal store of individual BHK-21 cells. Ion dependence of InsP3-induced Ca2+ release and reloading. FASEB J 1995; 9: 788–798.

    PubMed  CAS  Google Scholar 

  38. Hofer AM, Schulz I. Quantification of intraluminal free [Ca2+] in the agonist-sensitive internal calcium store using compartmentalized fluorescent indicators: some considerations. Cell Calcium 1996; 20(3):235–242.

    Article  PubMed  CAS  Google Scholar 

  39. Sugiyama T, Goldman WF. Measurement of SR free Ca2+ and Mg2+ in permeabilized smooth muscle cells with use of furaptra. Am J Physiol 1995; 269:C698–C705.

    PubMed  CAS  Google Scholar 

  40. London RE, Rhee CK, Murphy E et al. NMR-sensitive fluorinated and fluorescent intracellular calcium ion indicators with high dissociation constants. Am J Physiol 1994; 266:C1313–C1322.

    PubMed  CAS  Google Scholar 

  41. Hofer AM, Curci S, Machen TE et al. ATP regulates the passive leak from agonist-sensitive internal calcium stores. FASEB J 1996; 10:302–303.

    PubMed  CAS  Google Scholar 

  42. Steenberger JM, Fay FS. The quantal nature of calcium release to caffeine in single smooth muscle cells results from activation of the sarcoplasmic reticulum Ca2+-ATPase. J Biol Chem. 1996; 271(4):1821–1824.

    Article  Google Scholar 

  43. Petr MJ, Wurster RD. Determination of in situ dissociation constant and quantitation of background fluorescence in astrocyte cell line U373-MG. Cell Calcium 1997; 21(3):233–240.

    Article  PubMed  CAS  Google Scholar 

  44. Henke W, Cetinsoy C, Jung K et al. Non-hyperbolic calcium calibration curve of Fura-2: implications for the reliability of quantitative Ca2+ measurements. Cell Calcium 1996; 20(3):287–292.

    Article  PubMed  CAS  Google Scholar 

  45. Snitsarev VA, McNulty TJ, Taylor CW. Endogenous heavy metal ions perturb fura-2 measurements of basal and hormone-evoked Ca2+ signals. Biophys J 1996; 71:1048–1056.

    Article  PubMed  CAS  Google Scholar 

  46. Hopf FW, Turner PR, Denetclaw WF et al. A critical evaluation of resting intracellular free calcium regulation in dystrophic mdx muscle. Am J Physiol 1996; 271:C1325–C1339.

    PubMed  CAS  Google Scholar 

  47. Glennon MC, Bird GSt.J, Takemura H et al. In situ imaging of agonist-sensitive calcium pools in Ar4-2J pancreatoma cells. J Biol Chem 1992; 267(35):25568–25575.

    PubMed  CAS  Google Scholar 

  48. Terasaki M, Sardet C. Demonstration of calcium uptake and release by sea urchin egg cortical endoplasmic reticulum. J Cell Biol 1991; 115:1031–1037.

    Article  PubMed  CAS  Google Scholar 

  49. Short AD, Klein MG, Schneider MF et al. Inositol 1,4,5-trisphosphate-mediated quantal Ca2+ release measured by high resolution imaging of Ca2+ within organelles. J Biol Chem 1993; 268(34):25887–25893.

    PubMed  CAS  Google Scholar 

  50. Connor JA. Intracellular calcium mobilization by inositol 1,4,5-trisphosphate: intracellular movements and compartmentalization. Cell Calcium 1993; 14:185–200.

    Article  PubMed  CAS  Google Scholar 

  51. Perez-Terzic C, Stehno-Bittel L, Clapham DE. Nucleoplasmic and cytoplasmic differences in the fluorescence properties of the calcium indicator Fluo-3. Cell Calcium 1997; 21(4):275–282.

    Article  PubMed  CAS  Google Scholar 

  52. Arslan P, DiVirgilio F, Betrame M et al. Cytosolic Ca2+ homeostasis in Ehrlich and Yoshida carcinomas. A new membrane-permeant chelator of heavy metalds reveals that these ascites tumor cell lines have normal cytosolic free Ca2+. J Biol Chem 1985; 260:2719–2727.

    PubMed  CAS  Google Scholar 

  53. Scheenen WJ, Makings LR, Gross LR et al. Photodegradation of indo-1 and its effect on apparent Ca2+ concentrations. Chemistry Biol. 199; 3(9):765–774.

    Google Scholar 

  54. Etter E., Minta A, Poenie M et al. Near membrane [Ca2+] transients resolved using the Ca2+ indicator FFP18. Proc Natl Acad Sci USA 1996; 93:5368–5373.

    Article  PubMed  CAS  Google Scholar 

  55. Davies EV, Hallet MB. Near membrane Ca2+ changes resulting from store release in neutrophils: detection by FFP-18. Cell Calcium 1996; 19:355–362.

    Article  PubMed  CAS  Google Scholar 

  56. Lloyd QP, Kuhn MA, Gay CV. Characterization of calcium transients across the plasma membrane of primary osteoblasts using a lipophilic calcium-sensitive fluorescent dye, calcium green C18. J Biol Chem 1995; 270:224455–224451.

    Google Scholar 

  57. Home JH, Meyer T. Elementary calcium release units induced by inositol trisphosphate. Science 1997; 276:1690–1693.

    Article  Google Scholar 

  58. Belan PV, Gerasimenko OV, Tepikin AV et al. Localization of Ca2+ extrusion sites in pancreatic acinar cells. J Biol Chem 1996; 271(13):7615–7619.

    Article  PubMed  CAS  Google Scholar 

  59. Omann GM, Axelrod D. Membrane-proximal calcium transients in stimulated neutrophils detected by total internal reflection fluorescence. Biophys J 1996; 71(5): 2885–2891.

    Article  PubMed  CAS  Google Scholar 

  60. Allbritton NL, Oancea E, Kuhn M et al. Source of nuclear Ca2+ signals. Proc Natl Acad Sci USA 1994; 91:12458–12462.

    Article  PubMed  CAS  Google Scholar 

  61. Reinhard E, Yokoe H, Niebling KR et al. Localized calcium signals in early zebrafish development. Dev-Biol. 1995; 170(1):50–61.

    Article  PubMed  CAS  Google Scholar 

  62. Cox KJ, Fetcho JR. Labeling blastomeres with a calcium indicator: a non-invasive method of visualizing neuronal activity in zebrafish. J. Neurosci. Meth. 1996; 68:185–191.

    Article  CAS  Google Scholar 

  63. Chacon E, Ohata H, Harper IS et al. Mitochondrial free calcium transients during excitation-contraction coupling in rabbit cardiac myocytes. FEBS Letters 1996; 382:31–36.

    Article  PubMed  CAS  Google Scholar 

  64. Donnadieu E, Bourguignon LYW. Ca2+ signaling in endothelial cells stimulated by bradykinin: measurement in the mitochondria and cytosol by confocal microscopy. Cell Calcium 1996; 20:53–61.

    Article  PubMed  CAS  Google Scholar 

  65. Schreur JH, Figueredo VM, Miyame M et al. Cytosolic and mitochondrial [Ca2+] in whole hearts using indo-1 acetoxymethyl ester: effects of high extracellular Ca2+. Biophysical J 1996; 70:2571–2580.

    Article  CAS  Google Scholar 

  66. Allen SP, Stone D, McCormack JG. The loading of fura-2 into mitochondria in the intact perfused rat heart and its use to estimate matrix Ca2+ under various conditions. J Mol Cell Cardiol 1992; 24(7): 765–773.

    Article  PubMed  CAS  Google Scholar 

  67. Babcock DF, Herrington J, Goodwin PC et al. Mitochondrial participation in the intracellular Ca2+ network. J Cell Biol 1997; 136(4):833–844.

    Article  PubMed  CAS  Google Scholar 

  68. Hajnóczky G, Robb-Gaspers LD, Seitz MB et al. Decoding of cytosolic calcium oscillations in the mitochondria. Cell 1995; 82(3):415–424.

    Article  PubMed  Google Scholar 

  69. Miyawaki A, Llopis J, Heim R et al. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 1997; 388:882–887.

    Article  PubMed  CAS  Google Scholar 

  70. Persechini A, Lynch JA, Romoser VA. Novel fluorescent indicator proteins for monitoring free intracellular Ca2+. Cell Calcium 1997; 22:209–216.

    Article  PubMed  CAS  Google Scholar 

  71. Denk W, Svoboda K. Photon upmanship: why multiphoton imaging is more than a gimmick. Neuron 1997;18:351–357.

    Article  PubMed  CAS  Google Scholar 

  72. Szmacinski H, Lakowicz JR. Possibility of simultaneously measuring low and high calcium concentrations using Fura-2 and lifetime-based sensing. Cell Calcium 1995; 18: 64–75.

    Article  PubMed  CAS  Google Scholar 

  73. Martínez-Zaguilán R, Parnami G, Lynch RM. Selection of fluorescent ion indicators for simultaneous measurements of pH and Ca2+. Cell Calcium 1996; 19:337–349.

    Article  PubMed  Google Scholar 

  74. Lipp P, Niggli E. Ratiometric Ca2+ measurements with visible wavelength indicators in isolated cardiac myocytes. Cell Calcium 1993; 14:359–372.

    Article  PubMed  CAS  Google Scholar 

  75. Lipp P, Luscher C, Niggli E. Photolysis of caged compounds characterized by ratiometric confocal microscopy: a new approach to homogeneously control and measure the calcium concentration in cardiac myocytes. Cell Calcium 1996; 19(3):255–266.

    Article  PubMed  CAS  Google Scholar 

  76. Scheenen WJJM, Jenks BG, van Dinter RJAM et al. Spatial and temporal aspects of Ca2+ oscillations in Xenopus laevis melanotrope cells. Cell Calcium in press.

    Google Scholar 

  77. Tepikin AV, Llopis J, Snitsarev VA et al. The droplet technique: measurement of calcium extrusion from single isolated mammalian cells. Pflügers Arch 1994; 428:664–670.

    Article  PubMed  CAS  Google Scholar 

  78. Tepikin AV, Kostyuk PG, Snitsarev V et al. Extrusion of calcium from a single isolated neurone of the snail Helix-pomatia. J Membrane Biol 1991; 123:43–47.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aldebaran M. Hofer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hofer, A.M., Scheenen, W.J.J.M. (1999). Imaging Calcium in the Cytoplasm and in Organelles with Fluorescent Dyes: General Principles. In: Rizzuto, R., Fasolato, C. (eds) Imaging Living Cells. Springer Lab Manual. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60003-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60003-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65051-5

  • Online ISBN: 978-3-642-60003-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics