Advertisement

Targeted Toxin Hybrid Proteins

  • R. J. Kreitman
  • I. Pastan
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 137)

Abstract

The goal of targeted therapy is to kill cells bearing specific receptors. This is in contradistinction to cytotoxic chemotherapy, which depends on biochemical differences between normal and target cells. Many types of malignant cells, including those resistant to cytotoxic chemotherapy, display unique proteins on the cell surface, making such cells potentially sensitive to targeted therapy. Unlike small chemotherapeutic agents, which enter the cell by passing though the membrane, targeted therapy must enter through the specific receptors or antigens on the cell surface. Because such sites number only thousands per cell, the targeted agent must be extremely potent. Typically, protein toxins are used since they kill cells by catalytic mechanisms. In fact, it has been shown with both bacterial and plant toxins that only one molecule in the cytoplasm of cells is sufficient to kill the cell (CARRASCO et al. 1975; YAMAIZUMI et al. 1978; WILLINGHAM, FITZGERALD and PASTAN unpublished data).

Keywords

Multiple Myeloma Chronic Lymphocytic Leukemia Diphtheria Toxin Fusion Toxin Recombinant Immunotoxin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexanian R, Dimopoulos M (1994) The treatment of multiple myeloma. New Engl J Med 330: 484 – 489PubMedCrossRefGoogle Scholar
  2. Allured VS, Collier RJ, Carroll SF, McKay DB (1986) Structure of exotoxin A of Pseudomonas aeruginosa at 3.0-Ångstrom resolution. Proc Natl Acad Sci USA 83: 1320 – 1324PubMedCrossRefGoogle Scholar
  3. Anderson KC, Andersen J, Soiffer R, Freedman AS, Rabin owe SN, Robertson MJ, Spector N, Blake K, Murray C, Freeman A, Coral F, Marcus KC, Mauch P, Nadler LM, Ritz J (1993) Monoclonal antibody-purged bone marrow transplantation therapy for multiple myeloma. Blood 82: 2568 – 2576PubMedGoogle Scholar
  4. Batra JK, FitzGerald DJ, Chaudhary VK, Pastan I (1991) Single-chain immunotoxins directed at the human transferrin receptor containing Pseudomonas exotoxin A or diphtheria toxin: anti-TFR(Fv)-PE40 and DT388-anti-TFR(Fv). Mol Cell Biol 11: 2200 – 2205PubMedGoogle Scholar
  5. Batra JK, FitzGerald D, Gately M, Chaudhary VK, Pastan I (1990) Anti-Tac(Fv)- PE40: a single chain antibody Pseudomonas fusion protein directed at interleukin 2 receptor bearing cells. J Biol Chem 265: 15198 – 15202PubMedGoogle Scholar
  6. Batra JK, Jinno Y, Chaudhary VK, Kondo T, Willingham MC, FitzGerald DJ, Pastan I (1989) Antitumor activity in mice of an immunotoxin made with anti-transferrin receptor and a recombinant form of Pseudomonas exotoxin. Proc Natl Acad Sci USA 86: 8545 – 8549PubMedCrossRefGoogle Scholar
  7. Batra JK, Kasprzyk PG, Bird RE, Pastan I, King CR (1992) Recombinant anti-erb B2 immunotoxins containing Pseudomonas exotoxin. Proc Natl Acad Sci USA 89: 5867 – 5871PubMedCrossRefGoogle Scholar
  8. Brinkmann U, Gallo M, Brinkmann E, Kunwar S, Pastan I (1993) A recombinant immunotoxin that is active on prostate cancer cells and that is composed of the Fv region of monoclonal antibody PR1 and a truncated from of Pseudomonas exotoxin. Proc Natl Acad Sci USA 90: 547 – 551PubMedCrossRefGoogle Scholar
  9. Brinkmann U, Pai LH, FitzGerald DJ, Willingham M, Pastan I (1991) B3(Fv)- PE38KDEL, a single-chain immunotoxin that causes complete regression of a human carcinoma in mice. Proc Natl Acad Sci USA 88: 8616 – 8620PubMedCrossRefGoogle Scholar
  10. Buchner J, Pastan I, Brinkmann U (1992) A method for increasing the yield of properly folded recombinant fusion proteins: single-chain immunotoxins from renaturation of bacterial inclusion bodies. Anal Biochem 205: 263 – 270PubMedCrossRefGoogle Scholar
  11. Carrasco L, Fernandez-Puentes C, Vazquez D (1975) Effects of ricin on the ribosomal sites involved in the interaction of the elongation factors. Eur J Biochem 54: 499 – 503PubMedCrossRefGoogle Scholar
  12. Chaudhary VK, Batra JK, Gallo MG, Willingham MC, FitzGerald DJ, Pastan I (1990a) A rapid method of cloning functional variable-region antibody genes in Escherichia coli as single-chain immunotoxins. Proc Natl Acad Sci USA 87: 1066 – 1070CrossRefGoogle Scholar
  13. Chaudhary VK, FitzGerald DJ, Pastan I (1991) A proper amino terminus of diphtheria toxin is important for cytotoxicity. Biochem Biophys Res Commun 180: 545 – 551PubMedCrossRefGoogle Scholar
  14. Chaudhary VK, Gallo MG, FitzGerald DJ, Pastan I (1990a) A recombinant single- chain immunotoxin composed of anti-Tac variable regions and a truncated diphtheria toxin. Proc Natl Acad Sci USA 87: 9491 – 9494CrossRefGoogle Scholar
  15. Chaudhary VK, Jinno Y, FitzGerald D, Pastan I (1990b) Pseudomonas exotoxin contains a specific sequence at the carboxyl terminus that is required for cytotoxicity. Proc Natl Acad Sci USA 87: 308 – 312CrossRefGoogle Scholar
  16. Chaudhary VK, Jinno Y, Gallo MG, FitzGerald D, Pastan I (1990c) Mutagenesis of Pseudomonas exotoxin in identification of sequences responsible for the animal toxicity. J Biol Chem 265: 16306 – 16310Google Scholar
  17. Chaudhary VK, Queen C, Junghans RP, Waldmann TA, FitzGerald DJ, Pastan I (1989) A recombinant immunotoxin consisting of two antibody variable domains fused to Pseudomonas exotoxin. Nature 339: 394 – 397PubMedCrossRefGoogle Scholar
  18. Cook JP, Savage PM, Lord JM, Roberts LM (1993) Biologically active interleukin 2-ricin A chain fusion proteins may require intracellular proteolytic cleavage to exhibit a cytotoxic effect. Bioconjug Chem 4: 440 – 447PubMedCrossRefGoogle Scholar
  19. Edwards GM, DeFeo-Jones D, Tai JY, Vuocolo GA, Patrick DR, Heimbrook DC, Oliff A (1989) Epidermal growth factor receptor binding is affected by structural determinants in the toxin domain of transforming growth factor-alpha- Pseudomonas exotoxin fusion proteins. Mol Cell Biol 9: 2860 – 2867PubMedGoogle Scholar
  20. Fermand J-P, Chevret S, Ravaud P, Divine M, Leblond V, Dreyfus F, Mariette X, Brouet J-C (1993) High-dose chemoradiotherapy and autologous blood stem cell transplantation in multiple myeloma: results of a phase II trial involving 63 patients. Blood 82: 2005 – 2009PubMedGoogle Scholar
  21. FitzGerald DJP, Padmanabhan R, Pastan I, Willingham MC (1983) Adenovirus- induced release of epidermal growth factor and Pseudomonas toxin into the cytosol of KB cells during receptor-mediated endocytosis. Cell 32: 607 – 617PubMedCrossRefGoogle Scholar
  22. Friedman PN, McAndrew SJ, Gawlak SL, Chace D, Trail PA, Brown JP, Siegall CB (1993) BR96 sFv-PE40, a potent single-chain immunotoxin that selectively kills carcinoma cells. Cancer Res 53: 334 – 339PubMedGoogle Scholar
  23. Heimbrook DC, Stirdivant SM, Ahern JD, Balishin NL, Patrick DR, Edwards GM, DeFeo-Jones D, FitzGerald DJ, Pastan I, Oliff A (1990) Transforming growth factor a-Pseudomonas exotoxin fusion protein prolongs survival of nude mice bearing tumor xenografts. Proc Natl Acad Sci USA 87: 4697 – 4701PubMedCrossRefGoogle Scholar
  24. Heimbrook DC, Stirdivant SM, Ahern JD, Balishin NL, Patrick DR, Edwards GM, Defeo-Jones D, FitzGerald DJ, Pastan I, Oliff A (1991) Biological activity of a transforming growth factor-alpha-Pseudomonas exotoxin fusion protein in vitro and in vivo. J Indust Microbiol 7: 203 – 208CrossRefGoogle Scholar
  25. Hwang J, FitzGerald, DJ, Adhya S, Pastan I (1987) Functional domains of Pseudomonas exotoxin identified by deletion analysis of the gene expressed in E. coll Cell 48: 129 – 136Google Scholar
  26. Jagannath S, Vesole DH, Glenn L, Crowley J, Barlogie B (1992) Low-risk intensive therapy for multiple myeloma with combined autologous bone marrow and blood stem cell support. Blood 80: 1666 – 1672PubMedGoogle Scholar
  27. Kawano M, Hirano T, Matsuda T, Taga T, Horii Y, Iwato K, Asaoku H, Tang B, Tanabe O, Tanaka H, Kuramoto A, Kishimoto T (1988) Autocrine generation and requirement of BSF-2/IL-6 for human multiple myelomas. Nature 332: 83 – 85PubMedCrossRefGoogle Scholar
  28. Kiyokawa T, Shirono K, Hattori T, Nishimura H, Yamaguchi K, Nichols JC, Strom TB, Murphy JR, Takatsuki K (1989) Cytotoxicity of interleukin 2-toxin toward lymphocytes from patients with adult T-cell leukemia. Cancer Res 49: 4042 – 4046PubMedGoogle Scholar
  29. Kodaka T, Uchiyama T, Ishikawa T, Kamio M, Onishi R, Itho K, Hori T, Uchino H, Tsudo M, Araki K (1990) Interleukin-2 receptor /β-chain (p70–75) expressed on leukemic cells from adult T cell leukemia patients. Jpn J Cancer Res 81: 902 – 908PubMedGoogle Scholar
  30. Kondo T, FitzGerald D, Chaudhary VK, Adhya S, Pastan I (1988) Activity of immunotoxins constructed with modified Pseudomonas exotoxin A lacking the cell recognition domain. J Biol Chem 263: 9470 – 9475PubMedGoogle Scholar
  31. Kounnas MZ, Morris RE, Thompson MR, FitzGerald DJ, Strickland DK, Saelinger CB (1992) The α2-macroglobulin receptor/low density lipoprotein receptor- related protein binds and internalizes Pseudomonas exotoxin A. J Biol Chem 267: 12420 – 12423PubMedGoogle Scholar
  32. Kreitman RJ, Pastan I (1993) Purification and characterization of IL6-PE4E, a recombinant fusion of interleukin 6 with Pseudomonas exotoxin. Bioconjug Chem 7: 581 – 585CrossRefGoogle Scholar
  33. Kreitman RJ, Chaudhary VK, Waldmann T, Willingham MC, FitzGerald DJ, Pastan I (1990) The recombinant immunotoxin anti-Tac(Fv)-Pseudomonas exotoxin 40 is cytotoxic toward peripheral blood malignant cells from patients with adult T-cell leukemia. Proc Natl Acad Sci USA 87: 8291 – 8295PubMedCrossRefGoogle Scholar
  34. Kreitman RJ, Chaudhary VK, Kozak RW, FitzGerald DJP, Waldmann TA, Pastan I (1992a) Recombinant toxins containing the variable domains of the anti-Tac monoclonal antibody to the interleukin-2 receptor kill malignant cells from patients with chronic lymphocytic leukemia. Blood 80: 2344 – 2352Google Scholar
  35. Kreitman RJ, Chaudhary VK, Siegall CB, FitzGerald DJ, Pastan I (1992b) Rational design of a chimeric toxin: an intramolecular location for the insertion of transforming growth factor α within Pseudomonas exotoxin as a targeting ligand. Bioconjug Chem. 3: 58 – 62CrossRefGoogle Scholar
  36. Kreitman RJ, Schneider WP, Queen C, Tsudo M, FitzGerald DJP, Waldmann TA, Pastan I (1992c) Mik-β1(Fv)-PE40, a recombinant immunotoxin cytotoxic toward cells bearing the β-chain of the IL-2 receptor. J Immunol 149: 2810 – 2815Google Scholar
  37. Kreitman RJ, Siegall CB, FitzGerald DJP, Epstein J, Barlogie B, Pastan I (1992d) Interleukin-6 fused to a mutant form of Pseudomonas exotoxin kills malignant cells from patients with multiple myeloma. Blood 79: 1775 – 1780Google Scholar
  38. Kreitman RJ, Batra JK, Seetharam S, Chaudhary VK, FitzGerald DJ, Pastan I (1993a) Single-chain immunotoxin fusion between anti-Tac and Pseudomonas exotoxin: relative importance of the two toxin disulfide bonds. Bioconjug Chem 4: 112 – 120CrossRefGoogle Scholar
  39. Kreitman RJ, Chaudhary VK, Waldmann TA, Hanchard B, Cranston B, FitzGerald DJP, Pastan I (1993b) Cytotoxic activities of recombinant immunotoxins composed of Pseudomonas toxin or diphtheria toxin toward lymphocytes from patients with adult T-cell leukemia. Leukemia 7: 553 – 562Google Scholar
  40. Kreitman RJ, Baiion P, Chaudhary VK, FitzGerald DJP, Pastan I (1994) Recombinant immunotoxins containing anti-Tac(Fv) and derivatives of Pseudomonas exotoxin produce complete regression in mice of an interleukin-2 receptor-expressing human carcinoma. Blood 83: 426 – 434PubMedGoogle Scholar
  41. Kunwar S, Pai LH, Pastan I (1993) Cytotoxicity and antitumor effects of growth factor- toxin fusion proteins on human glioblastoma multiforme cells. J Neurosurg. 79: 569 – 576PubMedCrossRefGoogle Scholar
  42. Lorberboum-Galski H, Barrett LV, Kirkman RL, Ogata M, Willingham MC, FitzGerald DJ, Pastan I (1989) Cardiac allograft survival in mice treated with IL- 2-PE40. Proc Natl Acad Sci USA 86: 1008 – 1012PubMedCrossRefGoogle Scholar
  43. Lorberboum-Galski H, FitzGerald D, Chaudhary V, Adhay S, Pastan I (1988a) Cytotoxic activity of an interleukin 2-Pseudomonas exotoxin chimeric protein produced in Escherichia coli. Proc Natl Acad Sci USA 85: 1922 – 1926CrossRefGoogle Scholar
  44. Lorberboum-Galski H, Kozak RW, Waldmann TA, Baiion P, FitzGerald DJP, Pastan I (1988b) Interleukin 2 (IL2) PE40 is cytotoxic to cells displaying either the p55 or p70 subunit of the IL2 receptor. J Biol Chem 263: 18650 – 18656Google Scholar
  45. Lorberboum-Galski H, Garsia RJ, Gately M, Brown PS, Clark RE, Waldmann TA, Chaudhary VK, FitzGerald DJP, Pastan I (1990) IL2-PE664Glu, a new chimeric protein cytotoxic to human-activated T lymphocytes. J Biol Chem 265: 16311 – 16317PubMedGoogle Scholar
  46. Lowenthal JW, MacDonald HR, Iacopetta BJ (1986) Intracellular pathway of interleukin 2 following receptor-mediated endocytosis. Eur J Immunol 16: 1461 – 1463PubMedCrossRefGoogle Scholar
  47. Nichols PJ, Johnson VG, Andrew SM, Hoogenboom HR, Raus JCM, Youle RJ (1993) Characterization of single-chain antibody (sFv)-toxin fusion proteins produced in vitro in rabbit reticulocyte lysate. J Biol Chem 268: 5302 – 5308Google Scholar
  48. Ogata M, Chaudhary VK, Pastan I, FitzGerald DJ (1990) Processing of Pseudomonas exotoxin by a cellular protease results in the generation of a 37,000-Da toxin fragment that is translocated to the cytosol. J Biol Chem 265: 20678 – 20685PubMedGoogle Scholar
  49. Ogata M, Fryling CM, Pastan I, FitzGerald DJ (1992) Cell-mediated cleavage of Pseudomonas exotoxin between Arg279 and Gly280 generates the enzymatically active fragment which translocates to the cytosol. J Biol Chem 267: 25396 – 25401PubMedGoogle Scholar
  50. Pirker R, FitzGerald DJP, Hamilton TC, Ozols RF, Laird W, Frankel AE, Willingham MC, Pastan I (1985) Characterization of immunotoxins active against ovarian cancer cell lines. J Clin Invest 76: 1261 – 1267PubMedCrossRefGoogle Scholar
  51. Pirker R, FitzGerald DJP, Hamilton TC, Ozols RF, Laird W, Frankel AE, Willingham MC, Pastan I (1985) Characterization of immunotoxins active against ovarian cancer cell lines. J Clin Invest 76: 1261 – 1267PubMedCrossRefGoogle Scholar
  52. Robb RJ, Greene WC (1987) Internalization of interleukin 2 is mediated by the β chain of the high-affinity interleukin 2 receptor. J Exp Med 165: 1201 – 1206PubMedCrossRefGoogle Scholar
  53. Robb RJ, Greene WC, Rusk CM (1984) Low and high affinity cellular receptors for interleukin 2. J Exp Med 160: 1126 – 1146PubMedCrossRefGoogle Scholar
  54. Saito T, Kreitman RJ, Hanada S, Makino T, Utsunomiya A, Sumizawa T, Arima T, Chang CN, Hudson D, Pastan I, Akiyama S (1994) Cytotoxicity of recombinant Fab and Fv immunotoxins on adult T-cell leukemia lymph node and blood cells in the presence of soluble interleukin-2 receptor. Cancer Res 54: 1059 – 1064PubMedGoogle Scholar
  55. Seetharam S, Chaudhary VK, FitzGerald D, Pastan I (1991) Increased cytotoxic activity of Pseudomonas exotoxin and two chimeric toxins ending in KDEL. J Biol Chem 266: 17376 – 17381PubMedGoogle Scholar
  56. Siegall CB, Chardhary, VK, FitzGerald DJ, Pastan I (1988) Cytotoxic activity of an interleukin 6-Pseudomonas exotoxin fusion protein on human myeloma cells. Proc Natl Acad Sci USA 85: 9738 - 9742PubMedCrossRefGoogle Scholar
  57. Siegall CB, Chaudhary VK, FitzGerald DJ, Pastan I (1989a) Functional analysis of domains II, lb, and III of Pseudomonas exotoxin. J Biol Chem 264: 14256 – 14261Google Scholar
  58. Siegall CB, Xu Y-H, Chaudhary VK, Adhya S, FitzGerald D, Pastan I (1989b) Cytotoxic activities of a fusion protein comprised of TGFα and Pseudomonas exotoxin. FASEB J 3: 2647 – 2652Google Scholar
  59. Siegall CB, FitzGerald DJ, Pastan I (1990a) Cytotoxicity of IL6-PE40 and derivatives on tumor cells expressing a range of interleukin 6 receptor levels. J Biol Chem 265: 16318 – 16323Google Scholar
  60. Siegall CB, Nordan RP, FitzGerald DJ, Pastan I (1990b) Cell-specific toxicity of a chimeric protein composed of interleukin-6 and Pseudomonas exotoxin (IL6- PE40) on tumor cells. Mol Cell Biol 10: 2443 – 2447Google Scholar
  61. Siegall CB, Schwab G, Nordan RP, FitzGerald DJ, Pastan I (1990c) Expression of the interleukin 6 receptor and interleukin 6 in prostate carcinoma cells. Cancer Res 50: 7786 – 7788Google Scholar
  62. Siegall CB, Kreitman RJ, FitzGerald DJ, Pastan I (1991) Antitumor effects of interleukin 6-Pseudomonas exotoxin chimeric molecules against the human hepatocellular carcinoma, PLC/PRF/5 in mice. Cancer Res 51: 2831 – 2836PubMedGoogle Scholar
  63. Siegall CB, Kreitman RJ, FitzGerald DJ, Pastan I (1991) Antitumor effects of interleukin 6-Pseudomonas exotoxin chimeric molecules against the human hepatocellular carcinoma, PLC/PRF/5 in mice. Cancer Res 51: 2831 – 2836PubMedGoogle Scholar
  64. Studier FW, Moffatt BA (1986) Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189: 113 – 130PubMedCrossRefGoogle Scholar
  65. Uckun FM (1993) Annotation: immunotoxins for the treatment of leukaemia. Br J Haematol 85: 435 – 438PubMedCrossRefGoogle Scholar
  66. Vitetta ES, Fulton RJ, May RD, Till M, Uhr JW (1987) Redesigning nature’s poisons to create anti-tumor reagents. Science 238: 1098 – 1104PubMedCrossRefGoogle Scholar
  67. Waldmann TA (1991) The interleukin-2 receptor. J Biol Chem 266: 2681 – 2684PubMedGoogle Scholar
  68. Wels W, Harwerth I-M, Hueller M, Groner B, Hynes NE (1992) Selective inhibition of tumor cell growth by a recombinant single-chain antibody-toxin specific for the erbB-2 receptor. Cancer Res 52: 6310 – 6317PubMedGoogle Scholar
  69. Williams DP, Parker K, Bacha P, Bishai W, Borowski M, Genbauffe F, Strom TB, Murphy JR (1987) Diphtheria toxin receptor binding domain substitution with interleukin-2: genetic construction and properties of a diphtheria toxin-related interleukin-2 fusion protein. Protein Eng 1: 493 – 498PubMedCrossRefGoogle Scholar
  70. Williams DP, Wen Z, Watson RS, Boyd, J, Strom TB, Murphy JR (1990) Cellular procesing of the interleukin-2 fusion toxin DAB486-IL-2 and efficient delivery of diphtheria fragment A to the cytosol of target cells requires Arg194. J Biol Chem 265: 20673 – 20677PubMedGoogle Scholar
  71. Yagura H, Tamaki T, Furitsu T, Tomiyama Y, Nishiura T, Tominaga N, Katagiri S, Yonezawa T, Tarui S (1990) Demonstration of high-affinity interleukin-2 receptors on B-chronic lymphocytic leukemia cells: functional and structural characterization. Blut 60: 181 – 186PubMedCrossRefGoogle Scholar
  72. Yamaizumi M, Mekada E, Uchida T, Okada Y (1978) One molecule of diphtheria toxin fragment A introduced into a cell can kill the cell. Cell 15: 245 – 250PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • R. J. Kreitman
  • I. Pastan

There are no affiliations available

Personalised recommendations