Skip to main content

Pollen tubes: cellular organization and control of growth

  • Chapter
Anther and Pollen

Abstract

Pollen tubes are the specialized cells in seed plants that carry the sperm cells towards the ovules where double fertilization occurs. Pollen tubes, together with other cell types such as root hairs are exclusively tip growing cells, where expansion and wall secretion take place at the tip only (Derksen and Emons 1990). The growth rate of pollen tubes depends on the species and growth conditions, for example in pine the growth rate is less than one µm per hour (de Win et al. 1996) while in maize it is up to 160 µm per hour (Mascarenhas 1993). Pollen tubes also show similarity to haustoria cells as they grow in the alien tissues of the ovary, which provide nutrition (Johri 1992). Pollen tubes have been studied extensively, but mostly on a few taxa which easily grow in vitro, e.g. for Angiosperms Lilium, Nicotiana, Tradescantia and Petunia (Steer and Steer 1989; Derksen and Emons 1990; Mascarenhas 1993; Pierson and Cresti 1992; Derksen et al. 1995a; Derksen 1996; Taylor and Hepler et al. 1997; Li et al. 1997) and for Gymnosperms Pinus (de Win et al. 1996) and Picea (Lazzaro 1996). A number of properties have been thought to be of relevance for tip growth but comparison between species shows dissimilarities as well as similarities. Presently we will address the factors that determine growth by reviewing the cellular organization of pollen tubes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Åström H, Sorri O, Raudakoski M (1995) Role of microtubules in the movement of the vegetative nucleus and generative cell in tobacco pollen tubes. Sex Plant Reprod 8: 61–69

    Article  Google Scholar 

  • Battey N H, Blackbourn HD (1994) The control of exocytosis in plant cells. New Phytol 125: 307–338

    Article  Google Scholar 

  • Battey NH, James NC, Greenland AJ (1996) C-DNA isolation and gene expression of the maize annexins p33 and p35. Plant Physiol 112: 1391–1396

    Article  PubMed  CAS  Google Scholar 

  • Benkert R, Obermeyer G, Bentrup FW (1997) The turgor pressure of growing lily pollen tubes. Protoplasma 198: 1–8

    Article  Google Scholar 

  • Blackbourn HD, Jackson AP (1996) Plant clathrin heavy chain: sequence analysis and restricted localisation in growing pollen tubes. J Cell Sci 109: 777–786

    PubMed  CAS  Google Scholar 

  • Cai G, Bartalesi A, Del Casino C, Moscatelli A, Tiezzi A, Cresti, M (1993) The kinesinimmunoreactive homologue from Nicotiana tabacum pollen tube: biochemical properties and sub-cellular localization. Planta 191: 496–506

    Article  CAS  Google Scholar 

  • Dashek WV (1966) The lily pollen tube: aspects of fine chemistry and nurtrition in relation to fine structure. Ph D Thesis. Marquette University. Milwaukee, Wisconsin. USA

    Google Scholar 

  • Del Casino C, Li YQ, Moscatelli A, Scali M, Tiezzi A, Cresti M (1993) Distribution of microtubules during the growth of tobacco pollen tubes. Biol Cell 79: 125–132

    Article  Google Scholar 

  • Derksen J Emons AMC (1990) Microtubules in tip growth systems. In Heath IB (ed) Tip growth in plant and fungal cells. Academic Press Inc. San Diego, California, pp 147–181

    Google Scholar 

  • Derksen J, Pierson ES, Traas JA (1985) Microtubules in vegetative and generative cells of pollen tubes. Eur J Cell Biol 38: 142–148

    Google Scholar 

  • Derksen J, Traas JA (1984) Growh of tobacco pollen tubes in vitro; effects of drugs interfering with the cytoskeleton. In (Willemse MTM, van Went J.L. (eds). Sexual reproduction in seed plants, ferns and mosses. Proc. 8th Int Symp on Sex Reprod in seed plants, ferns and mosses. Pudoc, Wageningen, pp 64–67

    Google Scholar 

  • Derksen J, Rutten T, van Amstel T, de Win A, Doris F, Steer M (1995a) Regulation of pollen tube growth. Acta Bot Need 44: 93–119

    Google Scholar 

  • Derksen J, Rutten T, Lichtscheidl IK, de Win AHN, Pierson ES, Rongen G (1995b) Quantitative analysis of the distribution of organelles in tobacco pollen tubes: implications for exocytosis and endocytosis. Protoplasma 188: 267–276

    Article  Google Scholar 

  • Derksen J (1996) Pollen tubes: a model system for plant cell growth. Bot Acta 109: 341–345

    CAS  Google Scholar 

  • Derksen J, van Wezel R, Knuiman B, Ylstra B, van Tunen AJ (1999) Pollen tubes of flavonol deficient Petunia show striking alterations in wall structure leading to disruption. Planta, in press

    Google Scholar 

  • De Win AHN, Knuiman B, Pierson ES, Geurts H, Kengen HMP, Derksen J (1996) Development and cellular organization of Pinus sylvestris pollen tubes. Sex Plant Reprod 9: 93–101

    Article  Google Scholar 

  • De Win AHN, Worring M, Derksen J, Pierson ES (1997) Classification of organelle trajectories using region-based curve analysis. Cytometry 29: 136–146

    Article  PubMed  Google Scholar 

  • De Win AHN, Pierson ES, Timmer C, Lichtscheidl IK, Derksen J (1998) Interactive computer-assisted position acquisition procedure designed for the analysis of organelle movement in pollen tubes. Cytometry 32: 263–267

    Article  PubMed  Google Scholar 

  • De Win AHN, Pierson ES, Derksen J (1999) Rational analyses of organelle trajectories in tobacco pollen tubes reveal characteristics of the actomyosin cytoskeleton. Biophys J, in press

    Google Scholar 

  • Evans DE, Briars SA, Williams LE (1991) Active calcium transport by plant cell membranes. J Exp Bot 42: 285–303

    Article  CAS  Google Scholar 

  • Evans NA, Hoyne PA, Stone BA (1984) Characteristics and specificity of the interaction of a fluorochrome from aniline blue (Sirofluor) with polysaccharides. Carbohydr Polym 4: 215–230

    Article  CAS  Google Scholar 

  • Feijó JA, Malhó R, Obermeyer G (1995) Ion dynamics and its possible role during in vitro pollen germination and tube growth. Protoplasma 187: 155–167

    Article  Google Scholar 

  • Ferguson C, Teeri TT, Siika-aho M, Read SM, Bacic A (1998). Location of cellulose and callose in pollen tubes and grains of Nicotiana tabacum. Planta 206: 452–460

    Article  CAS  Google Scholar 

  • Gorsky-Brylass A (1986) The “callose”stage of the generative cells in pollen grains. Grana 10:21–30

    Article  Google Scholar 

  • Gray JE, McClure BA, Bonig I, Anderson, MA, Clarke AE (1991) Action of the style product of the self-incompatibility gene of Nicotiana alata (S-RNase) on in vitro-grown pollen tubes. Plant Cell 3: 271–283

    Article  PubMed  CAS  Google Scholar 

  • Hepler PK, Miller DD, Pierson ES, Callaham DA (1994) Calcium and pollen tube growth. In (Stephenson AG, Kao D-H (eds) Pollen-pistil interactions. Am Soc Plant Physiol, pp 111–123

    Google Scholar 

  • Herrero M, Dickinson HG (1981) Pollen tube development in Petunia hybrida following compatible and incompatible intraspecific matings. J Cell Sci 47: 365–383

    PubMed  CAS  Google Scholar 

  • Herth W, Franke WW, Bittiger H, Kuppel A, Keilich G (1974). Alkali-resistent fibrils of β-1-3 and α-1-4 glucans: structural polysaccharides in the pollen tube wall of Lilium longiflorum. Cytobiologie 9: 344–367

    CAS  Google Scholar 

  • Holdaway-Clarke TL, Feijó JA, Hackett GR, Kunkel JG, Hepler PK (1997) Pollen tube growth and the intracellular cytosolic calcium gradient oscillate in phase while extracellular calcium is delayed. Plant Cell 9: 1999–2110

    Article  PubMed  CAS  Google Scholar 

  • Iwanami, Y. (1959) Physiological studies on pollen. Yokohama Municipal University 116 (C-34, Biol. 13), 1–137

    Google Scholar 

  • Johri BM (1992) Haustorial role of pollen tubes. Ann Bot 70: 471–475

    Google Scholar 

  • Joos U, van Aken J, Kristen U (1994) Microtubules are involved in maintaining the cellular polarity in pollen tubes of Nicotiana sylvestris. Protoplasma 179: 5–15

    Article  Google Scholar 

  • Kroh M, Knuiman B (1982) Ultrastructure of cell wall and plugs of tobacco pollen tubes after chemical extraction of polysaccharides. Planta 154: 241–250

    Article  CAS  Google Scholar 

  • Lancelle SA, Cresti M, Hepler PK (1987) Ultrastructure of the cytoskeleton in freeze-substituted pollen tubes of Nicotiana. Protoplasma 140: 141–150

    Article  Google Scholar 

  • Lancelle SA, Hepler PK (1992) Ultrastructure of freeze-substituted pollen tubes of Lilium longiflorum. Protoplasma 167: 215–230

    Article  Google Scholar 

  • Lazzaro MD (1996) The actin microfilament network within eleongating pollen tubes of the gymnosperm Picea abies (Norway spruce). Protoplasma 194: 186–194

    Article  CAS  Google Scholar 

  • Li YQ, Brunn L, Pierson ES, Cresti M (1992) Periodic deposition of arabinogalactan epitopes in the cell wall of pollen tubes of Nicotiana tabacum. Planta 188: 532–538

    Article  CAS  Google Scholar 

  • Li YQ, Chen F, Linskens HF, Cresti M (1994) Distribution of unesterified and esterified pectins in cell walls of pollen tubes. Sex Plant Reprod 7: 145–152

    Google Scholar 

  • Li YQ, Chen F, Faleri C, Ciampolini F, Linskens HF, Cresti M (1995) Presumed phylogenetic basis of the correlation of pectin deposition pattern in pollen tube walls and the stylar structure of angiosperms. Proc Kon Ned Acad Wet Amsterdam 98: 39–44

    Google Scholar 

  • Li YQ, Zhang HQ, Pierson ES, Huang FY, Linskens HF, Hepler PK, Cresti M (1996) Enforced growth-rate fluctuation causes pectin ring formation in the cell wall of Lilium longiflorum pollen tubes. Planta 200: 41–49

    Article  CAS  Google Scholar 

  • Li YQ, Moscatelli A, Cai G, Cresti M (1997) Functional interactions among cytoskeleton, membranes and cell wall in the pollen tube of flowering plants. Int Rev Cytol 176: 133–199

    Article  PubMed  CAS  Google Scholar 

  • Malhó R, Read ND, Trewavas AJ, Pais MS (1995) Calcium channel activity during pollen tube growth and reorientation. Plant Cell 7: 1173–1184

    Article  PubMed  Google Scholar 

  • Malhó R, Trewavas AJ (1995) Localized apical increases of cytosolic free calcium control pollen tube orientation. Plant Cell 8: 1935–1949

    Article  Google Scholar 

  • Mühlethaler K, Linskens HF (1956) Elektronenmikroskopische Aufnahmen von Pollenschläuchen. Experientia 15: 253–255

    Article  Google Scholar 

  • Mascarenhas JP (1993) Molecular mechanisms of pollen tube growth and differentiation. Plant Cell 5: 1303–1314

    Article  PubMed  CAS  Google Scholar 

  • Miller DD, Scordilis SP, Hepler PK (1995) Identification and localization of three classes of myosins in pollen tubes of Lilium longiflorum and Nicotiana alata. J Cell Sci 108: 2549–2563

    PubMed  CAS  Google Scholar 

  • Miller DD, Lancelle SA, Hepler PK (1996) Actin filaments do not form a dense meshwork in Lilium longiflorum pollen tube tips. Protoplasma 195: 123–132

    Article  Google Scholar 

  • Obermeyer G, Kolb HA (1993) K+ channels in the plasma membrane of lily pollen protoplasts. Bot Acta 106: 26–31

    CAS  Google Scholar 

  • Obermeyer G, Weisenseel M (1991) Calcium channel blocker and calmodulin antagonists affect the gradient of free calcium ions in lily pollen tubes. Eur J Cell Biol 56: 319–327

    PubMed  CAS  Google Scholar 

  • Obermeyer G, Lützelschwab M, Heumann HG, Weisenseel W (1992) Immunolocalization of H+-ATPases in the plasma membrane of pollen grains and pollen tubes of Lilium longiflorum. Protoplasma 171: 55–63

    Article  CAS  Google Scholar 

  • Parthasarathy MV, Perdue TD, Witztum A, Alvernaz J (1985) Actin network as a normal component of the cytoskeleton in many vascular plant cells. Am J Bot 72: 1318–1323

    Article  Google Scholar 

  • Picton JM, Steer MW (1981) Determination of secretory vesicle production rate in by dictyosomes in pollen tubes of Tradescantia using Cytochalasin D. J Cell Sci. 49: 261–272

    PubMed  CAS  Google Scholar 

  • Picton JM, Steer MW (1983) Evidence for the role of Ca++ions in the tip extension in pollen tubes. Protoplasma 115: 11–17

    Article  CAS  Google Scholar 

  • Pierson ES. (1988) Rhodamine-phalloidin staining of F-actin in pollen after dimethyl- sulphoxide permeabilization: a comparison with the conventional formaldehyde preparation. Sex Plant Reprod 1: 83–87

    Article  Google Scholar 

  • Pierson ES, Cresti (1992) Cytoskeleton and cytoplasmic organization of pollen and pollen tubes. Int Rev Cytol 140: 73–125

    Article  CAS  Google Scholar 

  • Pierson ES, Derksen J, Traas JA (1986) Organization of microfilaments and microtubules in pollen tubes grown in vitro or in vivo in various angiosperms. Eur J Cell Biol 41: 14–18

    Google Scholar 

  • Pierson ES, Lichtscheidl IK, Derksen J (1990) Structure and behaviour of organelles in living pollen tubes of Lilium longiflorum. J Exp Bot 41: 1461–1468

    Article  Google Scholar 

  • Pierson ES, Miller DD, Callaham DA, Shipley AM, Rivers BA, Cresti M, Hepler PK (1994) Pollen tube growth is coupled to the extracellular calcium ion influx and the intracellular calcium gradient: effect of BAPTA-type buffer and hypertonic media. Plant Cell 6: 1815–1828

    Article  PubMed  CAS  Google Scholar 

  • Pierson ES, Li YQ, Zhang HQ, Willemse MTM, Linskens HF, Cresti M (1995) Pulsatory growth of pollen tubes: investigation of a possible relationship with the periodic distribution of cell wall components. Acta Bot Neerl 44: 121–128

    Google Scholar 

  • Pierson ES, Miller DD, Callaham DA, Van Aken J, Hackett G, Hepler PK (1996) Tip-localized calcium entry fluctuates during pollen tube growth. Dev Biol 174: 160–173

    Article  PubMed  CAS  Google Scholar 

  • Plyushch TA, Willemse MTM, Franssen-Verheijen MAW, Reinders MC (1995) Structural aspects of pollen tube growth and micropylar penetration in vitro in Gasteria verrucosa (Mill) H. Duval and Lilium longiflorum Thunb. Protoplasma 187: 13–21

    Article  Google Scholar 

  • Raudaskoski M, Åström H, Perttila K, Virtanen I, Louhelainen J (1987) Role of the microtubule skeleton in pollen tubes: an immunocytochemical and ultrastructural approach. Biol Cell 61: 177–188

    Google Scholar 

  • Rosen, W.G. (1964) Chemotropism and fine structure of pollen tubes. In Linskens HF (ed) Pollen Physiology and Fertilization. North-Holland Publish Company, Amsterdam, pp 159–166

    Google Scholar 

  • Rutten TLM, Derksen J (1990) Organization of actin filaments in regenerating and outgrowing subprotoplasts from pollen tubes of Nicotiana tabacum. Planta 180: 471–479

    Article  Google Scholar 

  • Rutten TLM, Derksen J (1992) Microtubules in pollen tube subprotoplasts: organization during protoplast formation and protoplast outgrowth. Protoplasma 167: 231–237

    Article  Google Scholar 

  • Rutten TLM, Knuiman B (1993) Brefeldin A effects on tobacco pollen tubes. Eur J Cell Biol 61: 247–255

    PubMed  CAS  Google Scholar 

  • Sassen MMA (1964) Fine structure of Petunia pollen grain and pollen tube. Acta Bot Neerl 13:175–181

    Google Scholar 

  • Schlüpmann H, Bacic A, Read SM (1994) Uridine diphosphate glucose metabolism and callose synthesis in cultured pollen tubes of Nicotiana alata Link et Otto. Plant Physiol 105: 659–670

    PubMed  Google Scholar 

  • Shimmen T, Yakota E (1994) Physiological and biochemical aspects of cytoplasmic streaming. Int Rev Cytol 155: 97–139

    Article  CAS  Google Scholar 

  • Steer MW (1988a) Plasma membrane turnover in plant cells. J Exp Bot 39: 987–996

    Article  Google Scholar 

  • Steer MW (1988b) The role of calcium in endocytosis and exocytosis in plant cells. Physiol Plant 72: 213–220

    Article  CAS  Google Scholar 

  • Steer MW, Steer JM (1989) Pollen tube tip growth. New Phytol 111: 323–358

    Article  Google Scholar 

  • Taylor LP, Hepler PK (1997) Pollen germination and pollen tube growth. Ann Rev Plant Physiol Plant Mol Biol 48: 461–491

    Article  CAS  Google Scholar 

  • Tang X, Hepler PK, Scordilis S.P (1989) Immunochemical and immunocytochemical identification of a myosin heavy chain polypeptide in Nicotiana pollen tubes. J Cell Sci 92: 569–574

    PubMed  CAS  Google Scholar 

  • Tirlapur UK, Scali M, Moscatelli A, Del Casino C, Cai G, Tiezzi A, Cresti M (1994) Confocal image analysis of spatial variation in immunocytochemically identified calmodulin during pollen hydration, germination and pollen tube tip growth in Nicotiana tabacum L. Zygote 2: 63–68

    Article  PubMed  CAS  Google Scholar 

  • Van Amstel (1995) Construction of Plant Cell Walls. Ph D Thesis. Catholic University Nijmegen. The Netherlands

    Google Scholar 

  • Van Cutsem P, Messiaen J (1994) Biological effets of pectic fragments in plant cells. Acta Bot Need 43: 231–245

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Derksen, J., van Amstel, A.N.M., Rutten, A.L.M., Knuiman, B., Li, Y.Q., Pierson, E.S. (1999). Pollen tubes: cellular organization and control of growth. In: Clément, C., Pacini, E., Audran, JC. (eds) Anther and Pollen. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59985-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59985-9_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64209-8

  • Online ISBN: 978-3-642-59985-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics