Skip to main content

Other Industrial Applications

  • Chapter
  • 316 Accesses

Abstract

According to an analysis carried out by the Freedonia Group [1] in 1994 the US market for coated textiles was 294 Mio/m2. This had a value of $ 2.5 billion. Most was textiles coated with PVC for use in the field of transport. The sector of protective working clothing was 10% of this quantity. This market segment had the biggest growth rate. In view of this, PVC will keep its dominant role in the market [1]. Polyester will increase further its share of the market as a textile substrate. The combination of PVC as a coating on polyester as a substrate is not expensive and fulfills all requirements.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. NFA dated 19 July, 1995

    Google Scholar 

  2. Peinemann K-V (1995) Stofftrennung mit porenfreien Kunststoff-Filmen. Spektrum der Wissenschaft August, pp 88–92

    Google Scholar 

  3. Bhave, RR (1991) Inorganic membranes: synthesis, characteristics and applications. New York

    Google Scholar 

  4. JA 6 3109 046A (Daüchi Lace KK; 27.10.86/13.5.88)

    Google Scholar 

  5. JA 6 2006 903A (Diya Gum KK; 2.7.85/13.1.87)

    Google Scholar 

  6. EP 0 039 184 (WL Gore & Ass.; DJ Golke 16.4.81/4.11.81; US Pior. 22.4.80)

    Google Scholar 

  7. WO 9 000 643-A (WL Gore & Ass.; 6.7.88/25.1.90)

    Google Scholar 

  8. WO 9 008 218-A (WL Gore & Ass.; 17.1.89/26.7.90)

    Google Scholar 

  9. US 4943 475 (Membrane Techn.; 23.7.86/24.7.90)

    Google Scholar 

  10. JA 6 2206 083 (Teijin KK; 6.3.86/10.9.87) and JA 1156 580 (86/20.6.89)

    Google Scholar 

  11. JA 2 035 842 (Teijin KK; 9.8.85/16.2.87)

    Google Scholar 

  12. Silver JA, Cooper SL (1994) Effekt der Polyolmolgewichte auf die Blutverträglichkeit von Polyurethanen mit Polyethylenoxidpolyol-Segmenten. Biomaterials 15:695

    Article  CAS  Google Scholar 

  13. JA 06 70 804 (94–70, 804) (Japan Gore Tex Inc.;29.8.92/i5.3.94)

    Google Scholar 

  14. Hinrichs WLJ (1993) Artificial skin. Nat Tech 708; Chem Abstr 121:65349g

    Google Scholar 

  15. US 5 346 788 (WR Grace & Co.; VSC Wang et al.; 1.4.93/13.9.94)

    Google Scholar 

  16. JA 06 116 867 (94 116 867) (Teijin Ltd.; M Nakayama, A Matsunaga, K Koga; 19.8.92/26.4.94)

    Google Scholar 

  17. Kwon SK (1994) Studies on the polyurethane diagnostic membrane for diabetes 2: Effect of additives in membrane formulation of urine glucose. Pollima (Seoul) 18:1055; Chem Abstr 122:75652 k

    Google Scholar 

  18. Wu P, Gaylor JDS (1994) A model of water vapor transmission in hydrocolloid wound dressings. J Membr Sci 27; Chem Abstr 122:89311 k

    Google Scholar 

  19. DOS 4 241 479 (Bayer; H Hugl et al.; 19.12.92/16.6.94)

    Google Scholar 

  20. EP 637 452 [Y. Shimizu; 6.8.93/8.2.95 (=JA 93/195 755)]

    Google Scholar 

  21. WO 94 22 432 (Rexham Ind.; GD Gregory; 7.4.93/13.10.94)

    Google Scholar 

  22. JA 07 53 764 (95 53, 764) (Asahi Chem. Ind.; H Yoneda; 17.8.93/28.2.95)

    Google Scholar 

  23. WO 95 13, 860 (CJM van Rijn; 12.11.93/26.5.95)

    Google Scholar 

  24. EP 638 352 (WL Gore & Ass.; T Wiemer, F Gruber; 9.8.93/15.2.95)

    Google Scholar 

  25. JA 07126 342 (95126 342) (Saint Gobain Vitrage; Asahi Glass Co. Ltd.; S Kondo, H Watanabe, K Yoshida, H Shimoda; 21.10.93/16.5.95)

    Google Scholar 

  26. EP 633 277 (Takeda Badische Urethane Ind. Ltd.; T Hirono, S Higashi, Y Suzuki; 5.7.93/11.1.95)=JA 93/192 051

    Google Scholar 

  27. US 5 428 123 (The Polymer Technology Group; RS Ward, KA White, 24.4.92; cip 27.6.95)

    Google Scholar 

  28. JA 5 3 025–280 [Ebara Inflilco KK; 10.8.76/8.3.78 (JA 095 272)]

    Google Scholar 

  29. GB 2 290 031 (Seton Healthcare Group PLC, UK; GJ Collyer, PA Gray; 8.6.94/13.12.95)

    Google Scholar 

  30. Powell N Membrane microfiltration for municipal water treatment. Membrane Technology No 71, pp 7–9

    Google Scholar 

  31. Weder M (1996) Überprüfung einer Schlafsackevaluation durch Praxisversuche. Textilveredelung 31 No 1/2, pp 35–36

    Google Scholar 

  32. JA 062 28 431 (Dainichiseika Color & Chem. Mfg.; 23.3.87/16.8.94)

    Google Scholar 

  33. JA 080 13 352 (Unitika Ltd.; K Kamemaru, M Shinomya, 19.6.94/16.1.96)

    Google Scholar 

  34. Sevatianov VI, Drushilak IV, Eberhart RC, Kim SW Blood compatible biomaterials: hydrophilicity vs. hdrophobicity. Macromol Symp 1996, 103 (Polymers and Medicine), pp 1–4

    Google Scholar 

  35. Mastura Raheel (1996) Modern Textile Characterisation Methods p 395

    Google Scholar 

  36. JA 07 313 585 (Mitsubishi Kagaku KK; T Kuroyanagi, M Tsunoda; 24.5.94/5.12.95

    Google Scholar 

  37. DOS 4 428 304 (H von Borries; 10.8.94/15.2.96)

    Google Scholar 

  38. Sepai O, Henschler D, Czech S, Eckert P, Sabbioni G (1995) Exposure to TDA from PU covered breast implants. Toxicl Lett 77:371

    Article  CAS  Google Scholar 

  39. EP 708 212 (E Doerken AG; J Fischer, K Urban, D Jablonka; 20.9.95/24.4.96)

    Google Scholar 

  40. PCT WO 96 09 165 (Exxon Chem. Pat. Inc.; LC Wadsworth, N Gosavi; 20.9.94/28.3.96)= US Appl. 309 841

    Google Scholar 

  41. DDR 301588 (Bundesamt für Wehrtechnik und Beschaffung; Forschungsinstitut für Leder und Kunstleder; S Fourier; D Harzer, M Herrmann, G Jurthe, G Reich, H Schoenfeld, J Semmer; 8.11.84/8.4.93)

    Google Scholar 

  42. DDR 301589 (Bundesamt für Wehrtechnik und Beschaffung; Forschungsinstitut für Leder und Kunstleder; S Fourier, D Harzer, M Herrmann, G Jurthe, G Reich, H Schoenfeld, J Semmer; 8.11.84/8.4.93)

    Google Scholar 

  43. DR 301590 (Bundesamt für Wehrtechnik und Beschaffung; Forschungsinstitut für Leder und Kunstleder; S Fourier, D Harzer, M Herrmann, G Jurthe, G Reich, H Schoenfeld, J Semmer; 8.11.84/8.4.93)

    Google Scholar 

  44. JA 8157 637 (Unitika Ltd.; Y Yabushita, H Yokoi, S Sakai; 6.12.94/18.6.96)

    Google Scholar 

  45. JA 81 64 590 (Matsushita Reiki KK; Mitsubishi Jukogyo KK; Komatsu Seiren KK; K Nagäta, M Inatani, S Kayashi, S Kondo, M Yamaguchi, A Okuya; 13.12.94/25.6.96)

    Google Scholar 

  46. PCT WO 96 20 040 (Gore Hybrid Technologies Inc.; SL Mish, PD Drumheller; 23.12.94/ 4.7.96)

    Google Scholar 

  47. DOS 4 218 216 (Enviromental Technologies Europa Ltd.; H Fuchs, W Knaupe, F Markert; 11.2.92 + 3.6.92+24.8.92/I7.6.93)=EP 625 962

    Google Scholar 

  48. Paul D, Malsch D, Bossin G, Wiese E, Thomaneck U, Brown GS, Heinz W, Falkenhagen D (1990) Chemische Modifizierung von Cellulose Membranen und ihre Blutverträglichkeit. Artif. Organs 14:122

    Article  CAS  Google Scholar 

  49. WO 88 01 877 (CWG Ansell; UK Prior. 6.I2.86+I6.1.87+22.1.87/24.3.88)=GB 86–29 231 + GB 87–943+GB 97–944+87–1 434

    Google Scholar 

  50. Müller FJ, Krieger W, Kissing W, Reiner R (1981) Reduction of membrane fouling in reverse osmosis by means of surface modification of the membranes. Fundam Appl Surf. Phenom Ass Fouling Clean Food Process, Proc Int Workshop, pp 343–347

    Google Scholar 

  51. Gottwald L (1996) Wasserdampfdurchlässige PUR Membranen für wetterfeste Laminate. J Coated Fabr 25:168

    CAS  Google Scholar 

  52. JA 81 68 658 (Toray Ind.; M Kurihara, Y Fusaoka, T Ikeda; 20.10.95/2.7.96)=JA 95–273188

    Google Scholar 

  53. JA 82 15 521 (Kanebo Ltd.; Y Mizukami, T Tejima, K Agari, Y Fukumoto, Y Tanaka; 10.2.95/ 27.8.96HA 95–45 101

    Google Scholar 

  54. EP 576 267 (Sumitomo Chem. Co. Ltd.; S Sembo; JA Prior. JA 92–168897; 26.6.92/29.12.93)= JA 6141724; JA 53 36 858 (Sumitomo Chem. Co. Ltd.; 7.4.92/21.12.93)=JA 92–85350

    Google Scholar 

  55. DDR 299 520 (Forschungsinstitut für Leder & Kunstleder; A Bauch, G Feigel, G Hebestreit, U Loose, R Steinhardt; 22.12.87/23.4.92)=DDR 87–310 990

    Google Scholar 

  56. JA 42 45 980 (Daiwabo Create Co. Ltd.; 28.1.91/2.9.92)=JA 91–60 829

    Google Scholar 

  57. Greenwald E (1992) New fabrics for the medical market. The 1992 Industrial Fabric and Equipment Exposition, Medical Textiles, Phoenix, USA, pp 128–134

    Google Scholar 

  58. WO 9418 242 (W Budinger; US Prior.5;2.93/i8.8.94)=US 93–14 018=US 5 384 337=EP 682 673

    Google Scholar 

  59. US 5 354 336 (WJ Ledergerber; 22.2.91/11.10.94)=US 91–660291

    Google Scholar 

  60. EP 289 859 [PPG Ind. Inc.; J Young, DD Leatherman; 24.4.87 (US 87–42 404)/9-H-88]

    Google Scholar 

  61. Corain B, Jerabek K (1996) Macro and microporous synthetic organic supports in industrial catalysis. Chim. Ind. (Milan) 78:563, 567

    Google Scholar 

  62. JA 71 32 573 (Araco KK; Kyowa Leather Cloth Co. Ltd.; 11.11.93/23–5–93)=JA 93–305 832;

    Google Scholar 

  63. JA 61 84 950 (Kyowa Leather Cloth Co. Ltd. 9.12.91/5.7.94)=JA 91–350 261

    Google Scholar 

  64. US 5 114 438 (PPG Ind. Inc.; DE Adams, GA Brons, DD Leatherman, JJ McGinley; 29.10.90/ 19.5.92)=US 90–605 283

    Google Scholar 

  65. F Chu, Kimura Y (1996) Structure and gas permeability of miocroporous films prepared by biaxial drawing of beta-form polypropylene. Polymer, 37:573

    Article  CAS  Google Scholar 

  66. Zhu W, Zhang X, Zhao C, Wu W, Xu M (1996) A novel polypropylene microporous film. Polym for Dav Technol Sussex, 7, No. 9, pp 743–748

    Article  CAS  Google Scholar 

  67. Mehnert L, Bernstein U (1996) Mikroporöse Strukturen und ihre Anwendung für Schutzbekleidung. Melliand, No 12, pp 870–872

    Google Scholar 

  68. Huang S-L, Ruaan R-Ch, Lai J-Y (1997) Gasdurchlässigkeit von PU-Membranen auf Basis Kupferion enthaltender, hydroxyterminierten Polybutadiene. J Membr Sci 71

    Google Scholar 

  69. WO 96 37 668 (Akzo Nobel N.V.; HJM van de Ven, E Maderek, JCW Spijkers; 22.5.95/ 28.11.96)=DE Appl. 19 518 686;

    Google Scholar 

  70. WO 96 37 665 (Akzo Nobel N.V.; HJM van de Ven, E Maderek, JCW Spijkers; 22.5.95/28.11.96)=DE Appl. 19 518 684

    Google Scholar 

  71. EP 289 859 (PPG Ind. Inc.; J Young, DD Leatherman; 24.4.87/9.11.88)=US 87–42 404

    Google Scholar 

  72. DOS 19 518 624 (Akzo Nobel N.V.; H Roettger, F Wechs; 24.5.95/21.11.96)

    Google Scholar 

  73. JA 84–125978 (Toray; 30.12.80/20.7.84MA 82–234 783

    Google Scholar 

  74. Horiuchi K, Yamaguchi T, Murata T, Tanioka A (1996) Computational simulation for the process of phosphate elimination by hemodialysis using hollow fibers. Sen i Gakkaishi 52:566

    CAS  Google Scholar 

  75. Anon. (1997) Lyocellfasern in der Nähwirktechnologie, Technische Textilien, 40 (April), p 99

    Google Scholar 

  76. Anon. (1997) Courtaulds Lyocell - new developments. Chem Fibers Int 47 (April), p 127;

    Google Scholar 

  77. Ortlepp G, Beckmann E, Mieck K-P (1997) Fibrillated lyocell filament yarn - a basis for new yarn structures. Chem Fibers Int 47 (April), p 129

    CAS  Google Scholar 

  78. Mieck K-P, Nicolai M, Nechwatal A (1997) Zum Veredelungsverhalten von Lyocell-Geweben. Melliand, No 5, pp 336, 338

    Google Scholar 

  79. Fritsche W (1997) Verarbeitungsversuche mit Lyocell-Fasern nach dem Nähdruckverfahren. Melliand No 5, p 320

    Google Scholar 

  80. Wehlmann U (1997) Reinigen von Abwasser aus der Textilveredlung mit Membranverfahren. Melliand No 4, p 249

    Google Scholar 

  81. Franken T Hydrophilic membranes in biomedical applications. Membrane Tech, No 82, p 6

    Google Scholar 

  82. JA 08 311779 (Achilles Corp.; S Kazuhiro, O Katsumi; 15.5.95/26.n.96)=JA 95–139 993

    Google Scholar 

  83. Ulbricht M, Papra A Polyacrylonitrile enzyme ultrafiltration membranes by adsorption, crosslinking and covalent binding. Enzyme and Microb Technol 20(1):61

    Google Scholar 

  84. Marques MJA, Silva MEC (1996) Properties of nonwovens in the healthcare industry. Tecnitex 96, Expo 2000, Torino, pp 119–124

    Google Scholar 

  85. WO 96 40 072 (Alkermes Controlled Therapeutics; OL Johnston, MM Ganmukhi, H Bernstein, H Auer, MA Khan; US Prior. 7.6.95/19.12.96)=US 95–477 725;

    Google Scholar 

  86. WO 96 40 073 (Alkermes Controlled Therapeutics; SE Zale, PA Burke, H Bernstein, A Brickner; US Prior. 7.6.95/ 19.12.96)=US 95–478 502

    Google Scholar 

  87. US 5 605 750 (Eastman Kodak Co.; ChE Romano, DE Bugner, WT Ferrar; 29.12.95/ 25.2.97)=US 95–580 698

    Google Scholar 

  88. Anon. (1997) Collagen improves wound dressing properties. Medical Textiles, February, p 6

    Google Scholar 

  89. Stelkens A, Mackenbach H (1995) Überblick über Textilien in Medizin und Hygiene - Anforderunsgprofile. Aachener Textiltagung, 29–30 November; in (1996) DWI Reports 117:65

    Google Scholar 

  90. Schwertfeger A, Hoffmann G, Offermann P (1995) Entwicklung von Vandalismus-Schutz-Textilien für den Bereich öffentlicher Verkehrsmittel. Aachener Textiltagung, 29–30 November in (1996) DWI Reports 117:227

    Google Scholar 

  91. JA 09 300 504 (Kao Corp.; S Sato; 16.5.96/25.11.97)=JA 96–121 612

    Google Scholar 

  92. JA 93 1 863 (Achilles Corp.; K Sugaya, K Oosawa; io.7.95/4.2.97)=JA 95–196 983

    Google Scholar 

  93. Kuroyanagi Y (1997) Artificial skin composed of cultured cells and matrix. Nessho 23(1)19; (1997) Chem Abstr 127:9003 b

    Google Scholar 

  94. DOS 19 536 033 (Oxyphen GmbH; HB Lueck; 28.9.95/10.4.97)

    Google Scholar 

  95. US 5 415 924 (Aquatic Design Inc.; DJ Herlihy; 3.5.95/20.5.97)=US 95–433 567

    Google Scholar 

  96. WO 97 15 378 (WL Gore & Associates GmbH; A Bauer, R Leckenwalder; 27.10.95/1.5.97)= DE Appl. 19 540 141

    Google Scholar 

  97. Anon. (1997) Lyocell-based fibre replaced alginate in wound dressing. High Performance Textiles 4:2

    Google Scholar 

  98. Carroll TR (1995) New advances in high performance composites for the protective clothing market. J Coated Fabr 24:313

    Google Scholar 

  99. Gurian M (1995) An evaluation of the effectiveness of anti-microbial finishes and additives to healthcare interior textiles. J Coated Fabr 25:13

    CAS  Google Scholar 

  100. Pause B (1995) Developement of heat and cold insulating membrane structures with phase change material. J Coated Fabr 25 (July), p 59

    CAS  Google Scholar 

  101. Anon. (1997) Biocompatibility promotes membrane dialysis function. Medical Textiles May, p 6; reports about the US 5 505 890 of Akzo

    Google Scholar 

  102. Bao YH, Xu DN (1997) Hydrophilic polyurethane groups and their application on roller - compacted concrete dams. Polym Concr Proc 2nd East Asia Symp, London, pp 179–188

    Google Scholar 

  103. Ukpabi PO (1998) Polyurethane membranes for surgically grown applications (Infectious Fluids) Diss Abstr Int B 58(58), 2104; UMI Order No DA9 727 883

    Google Scholar 

  104. JA 92 62 278 (Japan Synthetic Rubber Co. Ltd.; A Morikawa, K Shiho, N Kawahashi, Y Yama-kawa, K Kuroda; 29.3.96/7.10.97)=JA 96–103 262

    Google Scholar 

  105. Doi K, Matsuda T (1997) Significance of porosity and compliance of microporous polyurethane based microarterial vessel on neoarterial wall regeneration. J Biomed Mater Res 37:4

    Article  Google Scholar 

  106. US 5 674 523 (New Dimensions in Medicine Inc.; JV Cartmell, WR Sturtevant, ML Wolf; 1.9.95/7.10.97)=US 95–523 009

    Google Scholar 

  107. US 3 330 791 (Reeves Brothers; CE Matev, GC Wert; 16.12.63/11.7.67)

    Google Scholar 

  108. US 5 688 855 (SKY Polymers Inc.; VA Stoy, GA Gontarz; 1.5.95/18.11.97)=US 95–434 573

    Google Scholar 

  109. EP 808 859 (Sika AG; vorm. Kapsar Winkler & Co.; K Bosch, U Stadelmann-Sidler, TA Bürge; 20.5.96/26.11.97)

    Google Scholar 

  110. Poole-Warren LA, Martin DJ, Schindhelm K, Meijs GF (1997) Polymeric biomaterials. Mater Forum 21:241

    CAS  Google Scholar 

  111. Nina NMK, Woodhouse KA, Cooper SL (1997) Polyurethanes in biomedical applications. CRC Boca Raton

    Google Scholar 

  112. JA 09 308 523 (Daichi Lace Mfg. Co.; T Tachibana; 23.5.96/2.12.97)=JA 96–153 128

    Google Scholar 

  113. EP 812 948 (Toray Ind. Inc.; J Tabata, T Kamaya, M Hirata, K Saito, K Hori; 14.2.97/ 17.12.97)=JA 97–30 106

    Google Scholar 

  114. PCT 97 46 267 (Gore Enterprise Holdings Inc.; AD Cook, PD Drumheller; 11.12.97/ 30.5.97)=US 97–865 800

    Google Scholar 

  115. PCT 97 46 590 (Gore Enterprise Holdings Inc.; D Drumheller; 11.12.97/27–5–97)=US 97–863 263

    Google Scholar 

  116. T Hattori, T Yashima (eds) (1993) Studies in surface science and catalysis, Vol. 83: Zeolites and microporous crystals, Proceedings of the International Symposium on Zeolites and Microporous Crystals, Nagoya, 22–25 August, Amsterdam, 1994

    Google Scholar 

  117. Andrade JD (1985) Contact angle analysis of biomedical polymers: from air to water to electrolytes. In: Chiellini E, Giusti P, Miglaresi C, Nicolais L (eds) Polymers in Medicine II. New York, London, p 38

    Google Scholar 

  118. Tanzi MC, Albonico P, Barozi C, Bolognesi A, Fumerò R, Tieghi G (1985) Heparinizable segmented polyurethanes for cardio-vascular application. In: Chiellini E, Giusti P, Miglaresi C, Nicolais L (eds) Polymers in Medicine II. New York, London, pp 91–115;

    Google Scholar 

  119. Cooper SL, Lelah ML, Grasel TG (1985) Characterization of polyurethanes for blood-contacting applications. In: Chiellini E, Giusti P, Miglaresi C, Nicolais L (eds) Polymers in Medicine II. New York, London, pp 199–215.

    Google Scholar 

  120. Piskin E (1985) Characterization of membranes for artificial organs. In: Chiellini E, Giusti P, Miglaresi C, Nicolais L (eds) Polymers in Medicine II. New York, London, pp 247–252

    Google Scholar 

  121. Lingnau G (1998) Reines Silber unter sieben Hüllen. Frankfurter Allgemeine Zeitung, 31 March, p 7

    Google Scholar 

  122. PCT WO 98 08 884 (Tyndale Plains - Hunter Ltd.; MH Reich, K Nelson, J Kusma; 26.8.97/ 5.3.98; US Prior. 26.8.96)=US 97–40 094

    Google Scholar 

  123. PCT WO 98 01166 (Innovative Technologies Ltd.; T Grocott et al.; 4.7.96/15.1.98; GB Prior. 4.7.96)=GB 96–14 034

    Google Scholar 

  124. DOS 19 732 994 (Scapa Group PLC; P Wroblewski; F Doran; 9.1.96/12.2.98)=US 96–694 791

    Google Scholar 

  125. US 5 707 526 (Kraus-Menachem Israel; M Kraus, J Yocab; 8.8.95/13.1.98)=US 95–512 446

    Google Scholar 

  126. JA 10 24 098 (Nippon Sherwood KK; T Kikuchi; 12.7.96/27.1.98)=JA 96–182 927

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Träubel, H. (1999). Other Industrial Applications. In: New Materials Permeable to Water Vapor. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59978-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59978-1_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64206-7

  • Online ISBN: 978-3-642-59978-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics