Skip to main content

Intracellular Protein Modification and Signal Transduction in Response to Lipopolysaccharide

  • Conference paper
Symposium in Immunology VIII

Abstract

Post-translational covalent modifications are powerful tools to regulate protein functions. Modifications may occur e. g. via acylation, hydroxylation, methylation, thiolation, glycosylation, ADP (adenosine diphosphate) ribosylation and phosphorylation. Among these modifications, protein phosphorylation seems to be a principal mechanism involved in signal transduction processes. There is increasing evidence that other modifications like mono-ADP-ribosylation also contribute to signaling events (Wang et al. 1996; Vedia et al. 1992). Mono-ADP-ribosylation catalyzed by ADP-ribosyltransferases involves the transfer of the ADP-ribose moiety of nicotinamide adenine dinucleotide (NAD)+ to a specific amino acid in a target protein while the nicotinamide moiety is released. The best understood ADP-ribosyltransferases are bacterial toxins including cholera and pertussis toxin that interfere with signal transduction in human host cells by ADP-ribosylating regulatory G-proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Dong Z, Qi X, Fidler IJ (1993) Tyrosine phosphorylation of mitogen activated protein kinases is necessary for activation of murine macrophages and synthetic bacterial products. J Exp Med 177: 1071 – 1077

    Article  PubMed  CAS  Google Scholar 

  • Gallay P, Jongeneel CV, Barras C, Burnier M, Baumgartner JD, Glauser MP, Heu- mann D (1993) Short time exposure to lipopolysaccharide is sufficient to activate human monocytes. J Immunol 150: 5086 – 5093

    PubMed  CAS  Google Scholar 

  • Han J, Lee JD, Bibbs L, Ulevitch RJ (1994) A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 265: 808 – 811

    Article  PubMed  CAS  Google Scholar 

  • Hauschildt S, Scheipers P, Bessler WG (1991) Inhibitors of poly (ADP–ribose) polymerase suppress lipopolysaccharide-induced nitrite formation in macrophages. Biochem Biophys Res Commun 179: 865 – 871

    Article  PubMed  CAS  Google Scholar 

  • Hauschildt S, Schwarz C, Heine H, Ulmer AJ, Flad HD, Rietschel ET, Jensen ON, Mann M (1997) Actin: a target of lipopolysaccharide–induced phosphorylation in human monocytes. Biochem Biophys Res Commun 241: 670 – 674

    Article  PubMed  CAS  Google Scholar 

  • Heine H, Ulmer AJ, Flad HD, Hauschildt S (1995) Lipopolysaccharide-induced change of phosphorylation of two cytosolic proteins in human monocytes is prevented by inhibitors of ADP-ribosylation. J Immunol 155: 4899 – 4908

    PubMed  CAS  Google Scholar 

  • Kang YH, Dwivedi RS, Lee CH (1990) Ultrastructural and immunocytochemical study of the uptake and distribution of bacterial lipopolysaccharide in human monocytes. J Leuk Biol 43: 316 – 332

    Google Scholar 

  • Kovach NL, Yee E, Munford RS, Raetz CRH, Harlan JM (1990) Lipid IVA inhibits synthesis and release of tumor necrosis factor induced by lipopolysaccharide in human whole blood ex vivo. J Exp Med 172: 77 – 84

    Article  PubMed  CAS  Google Scholar 

  • Luchi M, Munford RS (1993) Binding, internalization, and deacylation of bacterial lipopolysaccharide by human neutrophils. J Immunol 151: 959 – 969

    PubMed  CAS  Google Scholar 

  • Mc Manon KK, Piron KJ, Ha VT, Fullerton AT (1993) Developmental and biochemical characteristics of the cardiac membrane-bound arginine-specific mono ADP- ribosyltransferase. Biochem J 293: 789 – 793

    Google Scholar 

  • Novogrodsky A, Vanichkin A, Patya M, Gazit A, Osherov N, Levitzki A (1994) Prevention of lipopolysaccharide-induced lethal toxicity by tyrosine kinase inhibitors. Science 27: 1319 – 1322

    Article  Google Scholar 

  • Rankin PW, Jacobson EL, Benjamin RC, Moss J, Jacobson MK (1989) Quantitative studies of inhibitors of ADP-ribosylation in vitro and in vivo. J Biol Chem 264: 4312 – 4317

    PubMed  CAS  Google Scholar 

  • Schuman EM, Meffert MK, Schulman H, Madison DV (1994) An ADP ribosyltrans- ferase as a potential target for nitric oxide action in hippocampal long–term potential. Proc Natl Acad Sci USA 91: 11958 – 11962

    Article  PubMed  CAS  Google Scholar 

  • Sung S, Walters JA, Fu SM (1992) Stimulation of tumor necrosis factor alpha production in human monocytes by inhibitors of protein phosphatase 1 and 2A. J Exp Med 176: 897 – 901

    Article  PubMed  CAS  Google Scholar 

  • Tsuchiya M, Hara N, Yamada K, Osago H, Shimoyama M (1994) Cloning and expression of cDNA for arginine-specific ADP-ribosyltransferase from chicken bone marrow cells. J Biol Chem 269: 27451 – 27457

    PubMed  CAS  Google Scholar 

  • Ulevitch RJ, Tobias PS (1994) Recognition of endotoxin by cells leading to transmembrane signaling. Curr Opin Immunol 6: 125 – 130

    Article  PubMed  CAS  Google Scholar 

  • Vedia ML, Mc Donald LB, Reep B, Brüne B, Di Silvio M, Billiar TR, Lapetina EG (1992) Nitric oxide induced S-nitrosylation of glyceraldehyde-3-phosphate dehydrogenase inhibits enzymatic activity and increases endogeneous ADP-ribosylation. J Biol Chem 267: 24929 – 24932

    Google Scholar 

  • Wang J, Nemoto E, Dennert G (1996) Regulation of CTL by ecto-nicotinamide adenine dinucleotide (NAD) involves ADP-ribosylation of a p56lck-associated protein. J Immunol 156: 2819 – 2827

    PubMed  CAS  Google Scholar 

  • Weinstein SL, Gold MR, De Franco AL (1991) Bacterial lipopolysaccharide stimulates protein tyrosine phosphorylation in macrophages. Proc Natl Acad Sci USA 88: 4148 – 4152

    Article  PubMed  CAS  Google Scholar 

  • Weinstein SL, Sanghera JS, Lemke K, DeFranco AL, Pelech SL (1992) Bacterial lipopolysaccharide induces tyrosine phosphorylation and activation of mitogen activated protein kinases in macrophages. J Biol Chem 267: 14955 – 14962

    PubMed  CAS  Google Scholar 

  • Zolkiewska A, Moss J (1993) Integrin a7 as substrate for a glycosylphosphatidylinos- itol-anchored ADP-ribosyltransferase on the surface of skeletal muscle cells. J Biol Chem 268: 25273 – 25276

    PubMed  CAS  Google Scholar 

  • Zolkiewska A, Nightingale MS, Moss J (1992) Molecular characterization of NAD: arginine ADP-ribosyltransferase from rabbit skeletal muscle. Proc Natl Acad Sci USA 89: 11352 – 11356

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hauschildt, S., Heine, H. (1999). Intracellular Protein Modification and Signal Transduction in Response to Lipopolysaccharide. In: Eibl, M.M., Huber, C., Peter, H.H., Wahn, U. (eds) Symposium in Immunology VIII. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59947-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59947-7_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64722-5

  • Online ISBN: 978-3-642-59947-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics