Skip to main content

Dynamics of Nutrient Transport from the Root to the Shoot

  • Chapter

Part of the book series: Progress in Botany ((BOTANY,volume 60))

Abstract

In 1990, Tanner and Beevers stated that transpiration was of minor importance for nutrient transport, since they could find no differences in growth of plants when grown at very different air humidities and therefore very different transpiration rates. This paper provoked a considerable amount of response (e.g. Smith 1991), which clearly showed the need for a critical reevaluation of processes involved in nutrient transport in the xylem sap.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersen PC, Brodbeck BV (1989) Diurnal and temporal changes in the chemical profile of xylem exudate from Vitis rotundifolia. Physiol Plant 75:63–70

    CAS  Google Scholar 

  • Andersen PC, Brodbeck BV, Mizell RF (1993) Diurnal variation of amino acids and organic acids in xylem fluid from Lagerstroemia indica: an endogenous circadian rhythm. Physiol Plant 89:783–790

    CAS  Google Scholar 

  • Andersen PC, Brodbeck BV, Mizell RF (1995) Diurnal variation in tension, osmolality, and the composition of nitrogen and carbon assimilates in xylem fluid of Prunus persica. Vitis hybird, and Pyrus communis. J Am Soc Hortic Sci 120:600–606

    Google Scholar 

  • Balling A, Zimmermann U (1990) Comparative measurements of the xylem pressure of Nicotiana plants by means of the pressure bomb and pressure probe. Planta 182:325–338

    Google Scholar 

  • Barker M, Becker P (1995) Sap flow rate and sap nutrient content of a tropical rain forest canopy species, Dryobalanops aromatica, in Brunei. Selbyana 16:201–211

    Google Scholar 

  • Barneix AJ, Causin HF (1996) The central role of amino acids on nitrogen utilisation and plant growth. J Plant Physiol 149:358–362

    CAS  Google Scholar 

  • Barneix AJ, James DM, Watson EF, Hewitt EJ (1984) Some effects of nitrate abundance and starvation on metabolism and accumulation of nitrogen in barley (Hordeum vulgare L. cv. Sonja). Planta 162:469–476

    CAS  Google Scholar 

  • Bazzanella A, Lochmann H, Mainka A, Bachmann K (1997) Determination of inorganic anions, carboxylic acids and amino acids in plant matrices by capillary electrophoresis. Chromatographia 45:59–62

    CAS  Google Scholar 

  • Ben Zioni A, Vaadia Y, Lips SH (1971) Nitrate uptake by roots as regulated by nitrate reduction products of the shoot. Physiol Plant 24:288–290

    Google Scholar 

  • Berger A, Oren R, Schulze ED (1994) Element concentrations in the xylem sap of Picea abies (L.) Karst. seedlings extracted by various methods under different environmental conditions. Tree Physiol 14:111–128

    PubMed  CAS  Google Scholar 

  • Bloom AJ, Caldwell MM (1988) Root excision decreases nutrient absorption and gas fluxes. Plant Physiol 87:794–796

    PubMed  CAS  Google Scholar 

  • Bloom AJ, Sukrapanna SE, Warner RH (1992) Root respiration associated with ammonium and nitrate absorption and assimilation in barley. Plant Physiol 99:1294–1301

    PubMed  CAS  Google Scholar 

  • Blom-Zandstra M, Lange EM (1985) The role of nitrate in the osmoregulation of lettuce (Lactuca sativa L.) grown at different light intensities. J Exp Bot 36:1043–1052

    CAS  Google Scholar 

  • Breteler H, Arnozis P (1985) Effect of amino compounds on nitrate utilisation by roots of dwarf bean. Phytochemistry 24:653–658

    CAS  Google Scholar 

  • Brewitz E, Larsson CM, Larsson M (1996) Responses of nitrate assimilation and N translocation in tomato (Lycopersicon esculentum Mill.) to reduced ambient air humidity. J Exp Bot 47:855–861

    CAS  Google Scholar 

  • Cameron KC, Haynes RJ (1986) Retention and movement of nitrogen in soils. In: Haynes RJ (ed) Mineral nitrogen in the plant-soil-system. Academic Press, Orlando

    Google Scholar 

  • Carjaval M, Cooke DT, Clarkson DT (1995) The effect of nutrient deprivation on the biochemical and biophysical properties of wheat root plasma membranes and their relation to root hydraulic conductivity. J Exp Bot 46:51–58

    Google Scholar 

  • Carjaval M, Cooke DT, Clarkson DT (1996a) Plasma membrane fluidity and hydraulic conductance in wheat roots: interaction between root temperature and nitrate or phosphate deprivation. Plant Cell Eniviron 19:1110–1114

    Google Scholar 

  • Carjaval M, Cooke DT, Clarkson DT (1996b) Responses of wheat plants to nutrient deprivation may involve the regulation of water-channel function. Planta 199:372–381

    Google Scholar 

  • Clarkson DT (1985) Regulation of the absorption and release of nitrate by plant cells: a review of current ideas and methodology. In: Lambers H, Neeteson J, Stulen I (eds) Physiological, ecological and applied aspects of nitrogen metabolism in higher plants. Nijhoff and Junk, Den Haag, 158–179

    Google Scholar 

  • Clarkson DT (1988) Movement of ions across roots. In: Baker DA, Hall JL (eds) Solute transport in plant cells and tissues. Longman, New York, pp 251–303

    Google Scholar 

  • Clarkson DT, Hanson JB (1986) Proton fluxes and the activity of a stelar proton pump in onion roots. J Exp Bot 37:1136–1150

    CAS  Google Scholar 

  • Clarkson DT, Lüttge U (1991) Mineral nutrition: inducible and repressible nutrient transport systems. Prog Bot 52:61–83

    Google Scholar 

  • Clarkson DT, Gojon A, Saker LR, Woersema PK, Purves JV, Tillard P, Arnold GM, Paans AJM, Vaalsburg W, Stulen I (1996) Nitrate and ammonium influxes in soybean (Glycine max) roots: direct comparison of 13N and 15N tracing. Plant Cell Environ 19:859–868

    CAS  Google Scholar 

  • Clement CR, Hopper MJ, Jones LHP, Leafe EL (1978) The uptake of nitrate by Lolium perenne from flowing nutrient solution. II. Effect of light, defoliation, and relationship to C02 flux. J Exp Bot 29:1173–1183

    CAS  Google Scholar 

  • Cooper HD, Clarkson DT (1989) Cycling of amino-nitrogen and other nutrients between shoots and roots in cereals - a possible mechanism integrating shoot and root in regulation of nutrient uptake. J Exp Bot 40:753–762

    CAS  Google Scholar 

  • Cooper HD, Clarkson DT, Johnson M, Whiteway J, Loughman BC (1986) Cycling of amino-nitrogen between shoots and roots in wheat seedlings. Plant Soil 91:319–322

    CAS  Google Scholar 

  • Davies WJ, Zhang J (1991) Root signals and the regulation of growth and development of plants in drying soil. Annu Rev Plant Mol Biol 42:55–76

    CAS  Google Scholar 

  • DeBoer AH, Wegner LH (1997) Regulatory mechanisms of ion channels in the xylem parenchyma. J Exp Bot 48:441–449

    PubMed  Google Scholar 

  • Delhon P, Gojon A, Tillard P, Passama L (1995a) Diurnal regulation of NO3 uptake in soybean plants. I. Changes in NO3 - influx, efflux, and N utilisation in the plant during the day/night cycle. J Exp Bot 46:1585–1594

    CAS  Google Scholar 

  • Delhon P, Gojon A, Tillard P, Passama L (1995b) Diurnal regulation of NO3 - uptake in soybean plants. II. Relationship with accumulation of NO3 - and asparagine in the roots. J Exp Bot 46:1595–1602

    CAS  Google Scholar 

  • Delhon P, Gojon A, Tillard P, Passama L (1996a) Diurnal regulation of NO3 - uptake in soybean plants. III. Implication on the Dijkshoorn-Ben Zioni model in relation with the diurnal changes in NO3 - assimilation. J Exp Bot 47:885–892

    CAS  Google Scholar 

  • Delhon P, Gojon A, Tillard P, Passama L (1996b) Diurnal regulation of NO3 - uptake in soybean plants. IV. Dependence on current photosynthesis and sugar availability to the roots. J Exp Bot 47:893–900

    CAS  Google Scholar 

  • Devienne F, Mary B, Lamaze T (1994a) Nitrate transport in intact wheat roots. I. Estimation of cellular fluxes and NO3 - distribution using compartmental analysis from data of 15NO3 - efflux. J Exp Bot 45:667–676

    CAS  Google Scholar 

  • Devienne F, Mary B, Lamaze T (1994b) Nitrate transport in intact wheat roots. II. Longterm effects of NO3 - concentration in the nutrient solution on NO3 -unidirectional fluxes and distribution within the tissues. J Exp Bot 45:677–684

    CAS  Google Scholar 

  • Doddema H, Otten H (1979) Uptake of nitrate by mutants of Arabidopsis thaliana, disturbed in uptake or reduction of nitrate. III. Regulation. Physiol Plant 45:339–346

    CAS  Google Scholar 

  • Engels C, Marschner H (1992) Adaptation of potassium transport into the shoot of maize (Zea mays) to shoot demand: evidence for xylem loading as a regulatory step. Physiol Plant 86:263–268

    Google Scholar 

  • Engels C, Marschner H (1993) Influence of the form of nitrogen supply on root uptake and translocation of cations in the xylem exudate of maize (Zea mays L.). J Exp Bot 44:1695–1701

    CAS  Google Scholar 

  • Engels C, Munkle L, Marschner H (1992) Effect of root zone temperature and shoot demand on uptake and xylem transport of macronutrients in maize (Zea mays L.). J Exp Bot 43:537–547

    CAS  Google Scholar 

  • Fiscus EL (1986) Diurnal changes in volume and solute transport coefficients in Phaseolus vulgaris roots. Plant Physiol 80:752–759

    PubMed  CAS  Google Scholar 

  • Forster JC, Jeschke WD (1993) Effects of potassium withdrawal on nitrate transport and the contribution of the root to nitrate reduction in the whole plant. J Plant Physiol 141:322–328

    Google Scholar 

  • Gerendas J, Schurr U (1988) Physicochemical aspects of ion relations and pH regulation in the apoplast - a quantitative approach. J Exp Bot (submitted)

    Google Scholar 

  • Gojon A, Grignon A, Tillard P, Massiot P, Levebvre F, Thellier M, Ripoll C (1996) Imaging and microanalysis of,4N and 15 N by SIMS microscopy in yeast and plant samples. Cell Mol Biol 42:351–360

    PubMed  CAS  Google Scholar 

  • Gollan T, Schurr U, Schulze ED (1992) Stomatal response to drying soil in relation to changes in the xylem sap composition of Helianthus annuus. I. The concentration of cations, anions, amino acids and the pH of the xylem sap. Plant Cell Environ 15:551–559

    CAS  Google Scholar 

  • Hansen GK (1980) Diurnal variation of root respiration rates and nitrate uptake as influenced by nitrogen supply. Physiol Plant 48:421–427

    CAS  Google Scholar 

  • Hartung W, Slovik S (1991) Physiochemical properties of plant growth regulators and plant tissues determine their distribution and redistribution: stomatal regulation by abscisic acid in leaves. New Phytol 119:361–382

    CAS  Google Scholar 

  • Hartung W, Wilkinson S, Davies WJ (1998) Factors that regulate abscisic acid concentrations at the primary site of action at the guard cell. J Exp Bot (in press)

    Google Scholar 

  • Hatch DJ, Hopper MJ, Dhanos MS (1986) Measurement of ammonium ions in the flowing solution culture and diurnal variation in uptake by Lolium perenne L. J Exp Bot 7:589–596

    Google Scholar 

  • Herschbach C, DeKok LJ, Rennenberg H (1995) Net uptake of sulphate and its transport to the shoot in spinach plants fumigated with H2S or SO2: does atmospheric sulphur affect the “inter-organ” regulation of sulphur nutrition? Bot Acta 108:41–46

    CAS  Google Scholar 

  • Imsande J, Touraine B (1994) N demand and the regulation of nitrate uptake. Plant Physiol 105:3–7.

    PubMed  CAS  Google Scholar 

  • Ingermarsson B (1987) Nitrogen utilisation in Lemna. I. Relations between net nitrate flux, nitrate reduction, and in vivo activity and stability of nitrate reductase. Plant Physiol 85:856–859

    Google Scholar 

  • Jackson WA, Volk RJ (1995) Attributes of the nitrogen uptake systems of maize (Zea mays L.): maximal suppression by exposure to both nitrate and ammonium. New Phytol 130:327–335

    CAS  Google Scholar 

  • Jarvis AJ, Davies WJ (1997) Whole plant ABA flux and the regulatin of water loss in Cedrella odorata. Plant Cell Environ 20:521–527

    CAS  Google Scholar 

  • Jeschke WD (1984) Effects of transpiration on potassium and sodium fluxes in root cells and the regulation of ion distribution between roots and shoots of barley plants. J Plant Physiol 117:267–285

    CAS  Google Scholar 

  • Jeschke WD, Pate JS (1991) Modelling of the partitioning, assimilation and storage of nitrate within root and shoot organs of castor beans (Ricinus communis L.). J Exp Bot 42:1091–1103

    CAS  Google Scholar 

  • Jeschke WD, Pate JS (1992) Temporal patterns of uptake, flow and utilisation of nitrate, reduced nitrogen and carbon in a leaf of salt-treated castor bean (Ricinus communis L.). J Exp Bot 43:393–402

    Google Scholar 

  • Jescke WD, Pate JS (1995) Mineral nutrition and transport in the xylem and phloem of Banksia prionotes (Protaceae), a tree with dimorphic root morphology. J Exp Bot 46:895–905

    Google Scholar 

  • Jeschke WD, Rath N, Baumel P, Czygan FC, Proksch P (1994a) Modelling of the flows and partitioning of carbon and nitrogen in the holoparasite Cuscuta refluxa Roxb. and its host Lupinus albus L. I. Methods for estimating flows. J Exp Bot 45:791–800

    CAS  Google Scholar 

  • Jeschke WD, Baumel P, Rath N, Czygan FC, Proksch P (1994b) Modelling of the flows and partitioning of carbon and nitrogen in the holoparasite Cuscuta refluxa Roxb. and its host Lupinus albus L. II. Flows between host and parasite and within the parasite host. J Exp Bot 45:801–812

    CAS  Google Scholar 

  • Jeschke WD, Peuke A, Kirkby EA, Pate JS, Hartung W (1996) Effects of P deficiency on the uptake, flows and utilisation of C, N and H2O within intact plants of Ricinus communis L. J Exp Bot 47:1737–1754

    CAS  Google Scholar 

  • Karmoker JL, Clarkson DT, Saker LR, Rooney JM, Purveys JV (1991) Sulphate deprivation depresses the transport of nitrogen to the xylem and the hydraulic conductivity of barley (Hordeum vulgare L.) roots. Planta 185:269–278

    CAS  Google Scholar 

  • King BJ, Siddiqi MY, Ruth TJ, Warner RL, Glass ADM (1993) Feedback control of nitrate influx in barley roots by nitrate, nitrite and ammonium. Plant Physiol 102:1279–1286

    PubMed  CAS  Google Scholar 

  • Kuhn A, Bauch J, Schröder WH (1995) Monitoring uptake and contents of Mg, Ca and K in Norway spruce as influenced by pH and Al using microprobe analysis and stable isotope labelling. Plant Soil 168/169:135–150

    Google Scholar 

  • Lacan D, Durand M (1996) Na+-K+-exchange at the xylem/symplast boundary. Plant Physiol 110:705–711

    PubMed  CAS  Google Scholar 

  • Lappartient AG, Touraine B (1996) Demand-driven control of root ATP sulfurylase activity and SO4 2-uptake in intact canola. Plant Physiol 111:147–157

    PubMed  CAS  Google Scholar 

  • Läuchli A (1976) Apoplastic transport in plants. In: Lüttge U, Mitman MG (eds) Encyclopedia of plant physiology, vol 2B. Springer, Berlin Heidelberg New York, pp 3–34

    Google Scholar 

  • Lee RB, Drew MC (1989) Rapid, reversible inhibition of nitrate influx in barley by ammonium. J Exp Bot 40:741–752

    CAS  Google Scholar 

  • Lee RB, Purves JV, Ratcliffe RG, Saker LR (1992) Nitrogen assimilation and the control of ammonium and nitrate absorption by maize roots. J Exp Bot 43:1385–1396

    CAS  Google Scholar 

  • Macduff JH, Wild J (1988) Changes in NO3 - and K+ uptake by four species in flowing nutrient solution culture in response to increased irradiance. Physiol Plant 74:251–256

    CAS  Google Scholar 

  • Macduff JH, Jackson SB (1992) Influx and efflux of nitrate and ammonium in Italian ryegrass and white clover roots: comparison between effects of darkness and defoliation. J Exp Bot 43:525–535

    CAS  Google Scholar 

  • Macduff JH, Bakken AK, Dhanoa MS (1997) An analysis of the physiological basis of commonality between diurnal patterns of NH4 +, NO3- and K+-uptake by Phleum pratense and Festuca pratensis. J Exp Bot 48:1691–1701

    CAS  Google Scholar 

  • Marienfeld S, Zhu JJ, Koyro HW, Schroder W, Zimmermann U (1996) Direkte Probeentnahme aus dem Xylem: Vergleich mit konventionellen Proben. Proceedings of the German Botanical Society, Diisseldorf, Abstr. 325

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic Press, Harcourt Brace, New York

    Google Scholar 

  • Marschner H, Kirkby EA, Cakmak I (1996) Effect of mineral nutritional status on shootroot partitioning of photoassimilates and cycling of mineral nutrients. J Exp Bot 47:1255–1263

    PubMed  CAS  Google Scholar 

  • Massiot P, Sommer F, Gojon A, Grignon N, Lefebvre F, Thellier M, Ripoll C (1994) Comparison of three different methods of analytical imaging of the stable isotopes of nitrogen for application to plant studies. J Trace Microprobe Techn 12:103–122

    CAS  Google Scholar 

  • Mattson M, Lundborg T, Larsson CM (1993) Nitrogen utilisation in N-limited barley during vegetative and generative growth. IV. Translocation and remobilisation of nitrogen. J Exp Bot 44:537–546

    Google Scholar 

  • McDonald AJS, Davies WJ (1996) Keeping in touch: responses of whole plant to deficits in water and nitrogen supply. Adv Bot Res 22:229–300

    Google Scholar 

  • Muller B, Touraine B (1992) Inhibition of NO3 - uptake by various phloem-translocated amino acids in soybean seedlings. J Exp Bot 43:617–623

    CAS  Google Scholar 

  • Muller B, Tillard P, Touraine B (1995) Nitrate fluxes in soybean seedling roots and their responses to amino acids: an approach using 15N. Plant Cell Environ 18:1267–1279

    CAS  Google Scholar 

  • Nye PH, Tinker PB (1977) Solute movement in the soil-root system. Blackwell, Oxford, p 342

    Google Scholar 

  • Pace GM, Volk RJ, Jackson WA (1990) Nitrate reduction in reponse to CO2-limited photosynthesis. Relationships to carbohydrate supply and nitrate reductase activity in maize seedlings. Plant Physiol 92:286–292

    PubMed  CAS  Google Scholar 

  • Passioura JB, Munns R (1984) Hydraulic resistance of plants. II. Effect of rooting medium and time of day, in barley and lupin. Aust J Plant Physiol 11:341–350

    Google Scholar 

  • Pearson CJ, Volk RJ, Jackson WA (1981) Daily changes in nitrate influx, efflux and metabolism in maize and pearl millet. Planta 152:319–324

    CAS  Google Scholar 

  • Peuke AD, Jeschke WD (1993) The uptake and flow of C, N and ions between roots and shoots in Richinus communis L. I. Growth with ammonium or nitrate as a nitrogen source. J Exp Bot 44:1167–1176

    CAS  Google Scholar 

  • Peuke AD, Kaiser WM (1996) Nitrate or ammonium uptake and transport, and rapid regulation of nitrate reduction in higher plants. Prog Bot 57:93–113

    CAS  Google Scholar 

  • Peuke AD, Glaab J, Kaiser WM, Jeschke WD (1996) The uptake and flow of C, N and ions between roots and shoots in Ricinus communis L. IV. Flow and metabolism of inorganic nitrogen and malate depending on nitrogen nutrition and salt treatment. J Exp Bot 47:377–385

    CAS  Google Scholar 

  • Pitman MG (1988) Whole plants. In: Baker DA, Hall JL (eds) Solute transport in plant cells and tissues. Longman, New York, pp 346–391

    Google Scholar 

  • Poirier Y, Thoma S, Sommerville C, Schiefelbein J (1991) A mutant of Arabidopsis thaliana deficient in xylem loading. Plant Physiol 97:1087–1093

    PubMed  CAS  Google Scholar 

  • Radin JW, Parker LL, Sell CR (1978) Partitioning of sugars between growth and nitrate reduction in cotton roots. Plant Physiol 62:550–553

    PubMed  CAS  Google Scholar 

  • Rennenberg H, Herschbach C (1995) Sulphur nutrition of trees: a comparison of spruce (Picea abies L.) and beech (Fagus sylvatica L.). Z Pflanzenernahr Bodenkd 158:513–517

    CAS  Google Scholar 

  • Richter C, Dainty J (1989a) Ion behaviour in plant cell walls. I. Characterisation of Sphagnum russowii cell wall ion exchanger. Can J Bot 67:451–459

    CAS  Google Scholar 

  • Richter C, Dainty J (1989b) Ion behaviour in plant cell walls. II. Measurements of the Donnan free space, anion exclusion space, anion-exchange capacity, and cation exchange capacity in delignified Sphagnum russowii cell walls. Can J Bot 67:460–465

    Google Scholar 

  • Rideout JW, Raper CD (1994) Diurnal changes in net uptake of nitrate are associated with changes in estimated export of carbohydrates to roots. Int J Plant Sci 155:173–179

    PubMed  CAS  Google Scholar 

  • Roberts SK, Tester M (1995) Inward and outward K+-selective currents in the plasma membrane of protoplasts from maize root cortex and stele. Plant J 8:811–825

    CAS  Google Scholar 

  • Roberts SK, Tester M (1997) Permeation of Ca2+ and monovalent cations through an outward rectifying channel in maize root cells. J Exp Bot 48:839–846

    CAS  Google Scholar 

  • Rufty TW, Israel DW, Volk RJ (1984) Assimilation of 15NO3 - taken up by plants in the light and in the dark. Plant Physiol 76:769–775

    PubMed  CAS  Google Scholar 

  • Ruiz LP, Atkinson CJ, Mansfield TA a(1993) Calcium in the xylem and its influence on the behaviour of stomata. Philos Trans R Soc Lond Biol 341:67–74

    CAS  Google Scholar 

  • Sauter JJ (1982) Transport in Markstrahlen. Ber Dtsch Bot Ges 95:593–618

    Google Scholar 

  • Scheible WR, Lauerer M, Schulze ED, Caboche M, Stitt M (1997) Accumulation of nitrate acts as a signal to regulate shoot-root allocation in tobacco. Plant J 11:671–691

    CAS  Google Scholar 

  • Schneider H, Zhu JJ, Zimmermann U (1997) Xylem and cell turgor pressure probe measurements in intact roots of glycophytes: transpiration induces a change in the radial and cellular reflection coefficients. Plant Cell Environ 20:221–229

    Google Scholar 

  • Schröder WH, Zhu JJ, Schneider H, Thürmer F, Zimmermann U, Marienfeld S (1996) Visualisierung von K-3 Mg- und Ca-Tracern in einzelnen Xylemelementen. Proceedings of the German Botanical Society, Diisseldorf, Abstr. 324

    Google Scholar 

  • Schurr U (1997) Growth physiology: approaches to a spatially and temporarily varying problem. Prog Bot 59:355–373

    Google Scholar 

  • Schurr U (1998) Xylem sap sampling - new aspects and techniques in an old topic. Trends in Plant Sci 3:293–298

    Google Scholar 

  • Schurr U, Schulze ED (1995) The concentration of xylem sap constituents in root exudate, and in sap from intact, transpiring castor bean plants (Ricinus communis L.). Plant Cell Environ 18:409–420

    CAS  Google Scholar 

  • Schurr U, Schulze ED (1996) Effect of drought on nutrient transport and ABA transport in Ricinus communis. Plant Cell Environ 19:665–674

    CAS  Google Scholar 

  • Schurr U, Gollan T, Schulze ED (1992) Stomatal response to drying soil in relation to changes in the xylem sap composition of Helium annuus. II. Stomatal sensitivity to abscisic acid imported from the xylem sap. Plant Cell Environ 15:561–567

    CAS  Google Scholar 

  • Schurr U, Herdel K, Schmidt P (1998a) Nutrient status affects diurnal variation of nutrient transport in the xylem. Plant Cell Environ (in preparation)

    Google Scholar 

  • Schurr U, Jahnke S, Schulze ED (1998b) Carbon transport and partitioning in Ricinus communis L.: impact of local changes in water potential and phloem sampling. J Exp Bot (submitted)

    Google Scholar 

  • Senden MHMN, VanPaassen FJM, Van derMeer AJGM, Wolterbeek HAT (1992) Cadmium- citric acid-xylem wall interactions in tomato plants. Plant Cell Environ 15:71–79

    CAS  Google Scholar 

  • Senden MHMN, Van derMeer AJGM, Verburg TG, Wolterbeek HAT (1994) Effects of cadmium on the behaviour of citric acid in isolated tomato cell walls. J Exp Bot 45:597–606

    CAS  Google Scholar 

  • Shaner DL, Boyer JS (1976) Nitrate reductase activity in maize (Zea mays L.) leaves. Plant Physiol 58:499–504

    PubMed  CAS  Google Scholar 

  • Siddiqi MY, Glass ADM, Ruth TJ, Rufty TW (1990 ) Studies on the uptake of nitrate in barley. I. Kinetics of 13N03 - influx. Plant Physiol 93:1426–1432

    PubMed  CAS  Google Scholar 

  • Slovik S, Daeter W, Hartung W (1995) Compartmental redistribution and long-distance transport of abscisic acid (ABA) in plants as influenced by environmental changes in the rhizosphere. A biomathematical model. J Exp Bot 46:881–894

    CAS  Google Scholar 

  • Smith JAC (1991) Ion transport and the transpiration stream. Bot Acta 104:416–421.

    CAS  Google Scholar 

  • Steingröver E, Oosterhuis R, Wieringa F (1982) Effect of light treatment and nutrition on nitrate accumulation in spinach (Spinacea oleracea L.). Z Pflanzenphysiol 107:97–102

    Google Scholar 

  • Steingröver E, Siesling J, Ratering P (1986a) Daily change in uptake, reduction and storage of nitrate in spinach grown at low light intensity. Physiol Plant 66:550–556

    Google Scholar 

  • Steingröver E, Siesling J, Ratering P (1986b) Effect of one night with “low light” on uptake, reduction and storage of nitrate in spinach. Physiol Plant 66:557–562

    Google Scholar 

  • Steudle E (1995) Trees under tension. Nature 378:663–664

    CAS  Google Scholar 

  • Stulen I (1985) Interactions between nitrogen and carbon metabolism in a whole plant context. In: Lambers H, Neeteson J, Stulen I (eds) Physiological, ecological and applied aspects of nitrogen metabolism in higher plants. Nijhoff and Junk, Den Haag, pp 234–257

    Google Scholar 

  • Tanner W, Beevers H (1990) Does transpiration have an essential function in longdistance transport in plants? Plant Cell Environ 13:745–750

    CAS  Google Scholar 

  • Tardieu F, Davies WJ (1993) Integration of hydraulic and chemical signalling and the control of stomatal conductance and water status of droughted plants. Plant Cell Environ 16:341–349

    CAS  Google Scholar 

  • Tennakoon KU, Pate JS (1997) Xylem fluxes of fixed N through nodules of the legume Acacia littorea and haustoria of an associated N-dependent root hemiparasite Olax phyllanthi. J Exp Bot 48:1061–1069

    CAS  Google Scholar 

  • Touraine B, Glass ADM (1977) NO3 =and C103 -fluxes in the chl-5 mutant of Arabidopsis thaliana. Plant Physiol 114:137–144

    Google Scholar 

  • Touraine B, Grignon N, Grignon C (1988) Charge balance in NO3fed soybean. Estimation of K+and carboxylate recirculation. Plant Physiol 88:605–612

    PubMed  CAS  Google Scholar 

  • Touraine B, Muller B, Grignon C (1992) Effect of phloem-translocated malate on nitrate uptake by roots of intact soybean plants. Plant Physiol 99:1118–1123

    PubMed  CAS  Google Scholar 

  • Tsay YF, Schroder JI, Feldmann A, Crawford NM (1993) The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible nitrate transporter. Cell 72:705–713

    PubMed  CAS  Google Scholar 

  • Van der Shoot C (1989) Determinants of xylem-phloem transfer in tomato. PhD Thesis University of Delft

    Google Scholar 

  • Veen BW, Kleinendorst A (1985) Nitrate accumulation and osmotic regulation in Italian ryegrass (Lolium multiflorum Lam.) J Exp Bot 36:211–218

    CAS  Google Scholar 

  • Wegner LH, Raschke K (1994) Ion channels in the xylem parenchyma or barley roots: a procedure to isolate protoplasts from this tissue and a patch-clamp exploration of salt passageways into xylem vessels. Plant Physiol 105:799–813

    PubMed  CAS  Google Scholar 

  • Wegner LH, DeBoer AH, Raschke K (1994) Properties of K+inward rectifier in the plasma membrane of xylem parenchyma cells from barley roots: effects of TEA+, Ca2+, Ba2+, and La3+. J Membr Biol 142:363–379

    PubMed  CAS  Google Scholar 

  • Wilkinson S, Davies WJ (1997) Xylem sap pH increase* a drought signal received at the apoplastic face of the guard cell which involves the suppression of saturable ABA uptake by the epidermal symplast. Plant Physiol 113:559–573

    PubMed  CAS  Google Scholar 

  • Wolterbeek HT (1987) Cation exchange in isolated cell walls of tomato. I. Cd2+ and Rb+ exchange in adsorption experiments. Plant Cell Environ 10:39–44

    CAS  Google Scholar 

  • Wolterbeek HT, VanLuiupen J, DeBruin M (1984) Non-steady state xylem transport of fifteen elements into the tomato leaf as measured by gamma-ray spectroscopy: a model. Physiol Plant 61:559–606

    Google Scholar 

  • Zhu JJ, Zimmermann U, Thürmer F, Haase A (1995) Xylem pressure response in maize roots subjected to osmotic stress: determination of radial coefficients by use of the xylem pressure probe. Plant Cell Environ 18:906–912

    Google Scholar 

  • Zimmermann U, Meinzer FC, Benkert R, Zhu JJ, Schneider H, Goldstein G, Kuchenbrod E, Haase A (1994) Xylem water transport: is the available evidence consistent with the cohesion theory? Plant Cell Environ 17:1169–1181

    Google Scholar 

  • Zimmermann U, Meinzer F, Bentrup FW (1995a) How does water ascend in tall trees and other vascular plants? An Bot 76:545–551

    Google Scholar 

  • Zimmermann U, Bentrup FW, Haase A (1995b) Xylem pressure, flow and sap composition of trees determined by means of the xylem pressure probe. In: Terazawa M (ed) Xylem sap utilisation. Hokaido University Press, Sapporo, pp 59–70

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schurr, U. (1999). Dynamics of Nutrient Transport from the Root to the Shoot. In: Esser, K., Kadereit, J.W., Lüttge, U., Runge, M. (eds) Progress in Botany. Progress in Botany, vol 60. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59940-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59940-8_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64189-3

  • Online ISBN: 978-3-642-59940-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics