Skip to main content

Secondary Plant Substances: Sesquiterpenes

  • Chapter
Progress in Botany

Part of the book series: Progress in Botany ((BOTANY,volume 60))

  • 378 Accesses

Abstract

The sesquiterpenes are the C15 representatives of the terpenoid family of the natural products and they diverge from higher isoprenoid biosynthesis at the level of farnesyl pyrophosphate (Ruzicka 1953). Sesquiterpenes comprise one of the largest and most diverse families of natural products, and they are produced by both lower plants such as fungi and other microorganisms and by higher plants, in which they are best known as a component of the essential oils. Most of the nearly 200 skeletal families of sesquiterpenes derived via cyclization of the ubiquitous C15 isoprenoid intermediate farnesyl pyrophosphate (Fig. 1; Glasby 1982; Conolly and Hill 1992; Buckingham 1994; Gijsen et al. 1995; Gonzalez and Barrera 1995). The chemistry and biochemistry of sesquiterpenoids are periodically reviewed (Pinder 1977; Cane 1981, 1990; Beale 1990a, b, 1991; Fraga 1991, 1995, 1997; Chappell 1995; Dewick 1995, 1997; McGarvey and Croteau 1995).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson MS, Yarger JG, Burck CL, Poulter CD (1989) Farnesyl diphosphate synthetase. Molecular cloning, sequence, and expression of an essential gene from Saccharomyces cerevisiae. J Biol Chem 264:19176–19184

    PubMed  CAS  Google Scholar 

  • Arigoni S (1975) Stereochemical aspects of sesquiterpene biosynthesis. Pure Appl Chem 41:219–245

    CAS  Google Scholar 

  • Ashby MN, Edwards PA (1989) Identification and regulation of a rat liver cDNA encoding farnesyl pyrophosphate synthetase. J Biol Chem 264:635–640

    PubMed  CAS  Google Scholar 

  • Back K, Chappell J (1995) Cloning and bacterial expression of a sesquiterpene cyclase from Hyoscyamus muticus and its molecular comparison to related terpene cyclases. J Biol Chem 270:7375–7381

    PubMed  CAS  Google Scholar 

  • Back K, Yin S, Chappell J (1994) Expression of a plant sesquiterpene cyclase gene in Escherichia coli. Arch Biochem Biophys 315:527–532

    PubMed  CAS  Google Scholar 

  • Bailey JA, Burden RS, Vincent GG (1975) Capsidol: an antifungal compound produced in Nicotiana tabacum and Nicotiana clevelandii following infection with tobacco necrosis virus. Phytochemistry 14:597

    CAS  Google Scholar 

  • Baker R, Coles HR, Edwards M, Evans DA, Howse PE, Walmsley S (1981) Chemical composition of the frontal gland secretion of Synternes soldiers (Isoptera, Termitidae). J Chem Ecol 7:135–145

    Google Scholar 

  • Barnard GF, Popjak G (1980) Characterization of liver prenyl transferase and its inactivation by phenylglyoxal. Biochim Biophys Acta 617:169–182

    PubMed  CAS  Google Scholar 

  • Barnard GF, Popjak G (1981) Human liver prenyltransferase and its characterization. Biochim Biophys Acta 661:87–99

    PubMed  CAS  Google Scholar 

  • Barnard GF, Langton B, Popjak G (1978) Pseudo-isoenzyme forms of liver prenyl transferase. Biochem Biophys Res Commun 85:1097–1103

    PubMed  CAS  Google Scholar 

  • Beale MH (1990a) Biosynthesis of C5-C20 terpenoid compounds. Nat Prod Rep 7:25–39

    PubMed  CAS  Google Scholar 

  • Beale MH (1990b) Biosynthesis of C5-C20 terpenoid compounds. Nat Prod Rep 7:387–407

    CAS  Google Scholar 

  • Beale MH (1991) Biosynthesis of C5-C20 terpenoid compounds. Nat Prod Rep 8:441–454

    CAS  Google Scholar 

  • Belingheri L, Pauly G, Gleizes M, Marpeau A (1988) Isolation by an aqueous two-polymer phase system and identifcation of endomembranes from Citrofortunella mitis fruits for sesquiterpenes hydrocarbon synthesis. J Plant Physiol 132:80–85

    CAS  Google Scholar 

  • Belingheri L, Cartayrade A, Pauly G, Gleizes M (1992) Partial purification and properties of the sesquiterpene P-selinene cyclase from Citrofortunella mitis fruits. Plant Sci 84:129–136

    CAS  Google Scholar 

  • Benedict CR, Alchanati I, Harvey PJ, Liu J, Stipanovic RD, Bell AA (1995) The enzymatic formation of 5-cadinene from farnesyl diphosphate in extracts of cotton. Phytochemistry 39:327–333

    Google Scholar 

  • Birnbaum GI, Stoessl A, Grover SH, Stothers JB (1974) Post-infectional inhibitors from plants VIII. carbon-13 NMR studies 40. complete stereostructure of capsidiol. X-ray analysis and carbon-13 nuclear trans-vicinal methyl groups. Can J Chem 52:993–1005

    CAS  Google Scholar 

  • Birnbaum GI, Huber CP, Post ML, Stothers JB, Robinson JR, Stoessl A, Ward EWB (1976) Sequiterpenoid stress compounds of Datura stramonium: biosynthesis of the three major metabolites from (1,2-13C) acetate and X-ray structure of 3-hydroxy-lubimin. Chem Commun 300-331

    Google Scholar 

  • Blanchard L, Karst F (1993) Characterization of a lysine-to-glutamic acid mutation in a conservative sequence of farnesyl diphosphate synthase from Saccharomyces cerevisiae. Gene 125:185–189

    PubMed  CAS  Google Scholar 

  • Brems DN, Rilling HC (1979) Photoaffinity labeling of the catalytic site of prenyl transferase. Biochemistry 18:860–864

    PubMed  CAS  Google Scholar 

  • Brems DN, Bruenger E, Rilling HC (1981) Isolation and characterization of a photoaffinity- labeled peptide from the catalytic site of prenyltransferase. Biochemistry 20:3711–3718

    PubMed  CAS  Google Scholar 

  • Brindle PA, Kuhn PJ, Threlfall DR (1983) Accumulation of phytoalexins in potato cell suspension culture. Phytochemistry 22:2719–2721

    CAS  Google Scholar 

  • Brindle PA, Kuhn PJ, Threlfall DR (1988) Biosynthesis and metabolism of sesquiterpenoid phytoalexins and triterpenoids in potato cell suspension cultures. Phytochemistry 27:133–150

    CAS  Google Scholar 

  • Brooks CJW, Watson DG, Freer IM (1986) Elicitation of capsidiol accumulation in suspended callus cultures of Capsicum annuum. Phytochemistry 25:1089–1092

    CAS  Google Scholar 

  • Buckingham J (ed) (1994) Dictionary of natural products, vols 1-8. Chapman and Hall, London

    Google Scholar 

  • Burden RS, Rowell PM, Bailey JA, Loeffler RST, Kemp MS, Brown CA (1985) Debneyol a fungicidal sesquiterpene from TNV-infected Nicotiana debneyi. Phytochemistry 24:2191–2194

    CAS  Google Scholar 

  • Burden RS, Loeffler RST, Rowell PM, Bailey JA, Kemp MS (1986) Cyclodebneyol, a fungitoxic sesquiterpene from TNV-infected Nicotiana debneyi. Phytochemistry 25:1607–1608

    CAS  Google Scholar 

  • Cane DE (1981) Biosynthesis of sesquiterpenes. In: Porter JW, Spurgeon SL (eds) Biosynthesis of isoprenoid compounds. Wiley, New York, pp 283–374

    Google Scholar 

  • Cane DE (1985) Isoprenoid biosynthesis. Stereochemistry of the cyclization of allylic pyrophosphate. Acc Chem Res 18:220–226

    CAS  Google Scholar 

  • Cane DE (1989) Stereochemical studies of natural products biosynthesis. Pure Appl Chem 61:493–496

    CAS  Google Scholar 

  • Cane DE (1990) Enzymatic formation of sequiterpenes. Chem Rev 90:1089–1103

    CAS  Google Scholar 

  • Cane DE, Bryant C (1994) Aristolochene synthase. Mechanism-based inhibition of a terpenoid cyclase. J Am Chem Soc 116:12063–12064

    CAS  Google Scholar 

  • Cane DE, Tandon M (1994) Biosynthesis of (+)-epicubenol. Tetrahedron Lett 35:5355–5358

    CAS  Google Scholar 

  • Cane DE, King GGS (1976) Biosynthesis of ovalicin: isolation of ß-traws-bergamotene. Tetrahedron Lett 4737–4740

    Google Scholar 

  • Cane DE, Mcllwaine DB (1987) The biosynthesis of ovalicin from ß-trarcs-bergamotene. Tetrahedron Lett 28:6545–6548

    CAS  Google Scholar 

  • Cane DE, Pargellis C (1987) Partial purification and characterization of pentalenene synthase. Arch Biochem Biophys 254:421–429

    PubMed  CAS  Google Scholar 

  • Cane DE, Rossi T (1979) The isolation and structural elucidation of pentalenolactone E. Tetrahedron Lett 32:2973–2974

    Google Scholar 

  • Cane DE, Tandon M (1995) Epicubenol synthase and the stereochemistry of the enzymatic cyclization of farnesyl and nerolidyl diphosphate. J Am Chem Soc 117:5602–5603

    CAS  Google Scholar 

  • Cane DE, Tillman AM (1983) Pentalenene biosynthesis and the emzymatic cyclization of farnesyl pyrophosphate. J Am Chem Soc 105:122–124

    CAS  Google Scholar 

  • Cane DE, Tsantrizos YS (1996) Aristolochene synthase. Elucidation of the cryptic germacrene A synthase activity using the anomalous substrate dihydrofarnesyl diphosphate. J Am Chem Soc 118:10037–10040

    CAS  Google Scholar 

  • Cane DE, Weiner SW (1994) Cyclization of farnesyl diphosphate to pentalenene. Orthogonal stereochemistry in an enzyme-catalyzed SE’ reaction. Can J Chem 72:118–127

    CAS  Google Scholar 

  • Cane DE, Rossi T, Pachlatko JP (1979) The biosynthesis of pentalenolactone. Tetrahedron Lett 3639-3642

    Google Scholar 

  • Cane DE, Rossi T, Tillman AM, Pachlatko JP (1981) Stereochemical studies of isoprenoid biosynthesis. Biosynthesis of pentalenolactone from (U-12C6)glucose and (6-2H2)glucose. J Am Chem Soc 103:1838–1843

    CAS  Google Scholar 

  • Cane DE, Abell C, Tillman AM (1984) Pentalenene biosynthesis and the enzymatic cycliazation of farnesyl pyrophosphate : proof that the cyclization is catalyzed by a single enzyme. Bioorg Chem 12:312–328

    CAS  Google Scholar 

  • Cane DE, Ha HJ, Pargellis C, Waldmeier F, Swanson S, Murthy PPN (1985) Trichodiene biosynthesis and the stereochemistry of the enzymatic cyclization of farnesyl pyrophosphate. Bioorg Chem 13:246–265

    CAS  Google Scholar 

  • Cane DE, Rawlings BJ, Yang CC (1987) Isolation of (-)-δ-cadinene and aristolochene from Aspergillus terreus. J Antibiot 40:1331–1334

    PubMed  CAS  Google Scholar 

  • Cane DE, Abell C, Lattman R, Kane CT, Hubbard BR, Harrison PHM (1988) Pentalenene biosynthesis and the enzymatic cyclization of farnesyl pyrophosphate. Anti stereochemistry in a biological SE’ reaction. J Am Chem Soc 110:4081–4082

    CAS  Google Scholar 

  • Cane DE, Prabhakaran PC, Salaski EJ, Harrison PHM, Noguchi H, Rawlings BJ (1989a) Aristolochene biosynthesis and enzymatic cyclization of farnesyl pyrophosphate. J Am Chem Soc 111:8914–8916

    CAS  Google Scholar 

  • Cane DE, Mcllwaine DB, Harrison PHM (1989b) Bergamotene biosynthesis and the enzymatic cyclization of farnesyl pyrophosphate. J Am Chem Soc 111:1152–1153

    CAS  Google Scholar 

  • Cane DE, Mcllwaine DB, Oliver JS (1990a) Absolute configuration of (-)-ß-transbergamotene. J Am Chem Soc 112:1285–1286

    CAS  Google Scholar 

  • Cane DE, Oliver JS, Harrison PHM, Abell C, Hubbard BR, Kane CT, Lattman R (1990b) Biosynthesis of pentalenene and pentalenolactone. J Am Chem Soc 112:4513–4524

    CAS  Google Scholar 

  • Cane DE, Prabhakaran PC, Oliver JS, Mcllwaine DB (1990c) Aristolochene biosynthesis. Stereochemistry of the deprotonation steps in the enzymatic cyclization of farnesyl pyrophosphate. J Am Chem Soc 112:3209–3210

    CAS  Google Scholar 

  • Cane DE, Abell C, Harrison PAM, Hubbard BR, Kane CT, Lattmann R, Oliver JS, Weiner SW (1991) Terpenoid biosynthesis and the stereochemistry of enzyme-catalyzed alliylic addition-elimination reactions. Philos Trans R Soc Lond Ser B 332:123–129

    CAS  Google Scholar 

  • Cane DE, Tandon M, Prabhakaran PC (1993a) Epicubenol synthase and the enzymatic cyclization of farnesyl disphosphate. J Am Chem Soc 115:8103–8106

    CAS  Google Scholar 

  • Cane DE, Wu Z, Proctor RH, Hohn TM (1993b) Overexpression in Escherichia coli of soluble aristolochene synthase from Penicillium roqueforti. Arch Biochem Biophys 304:415–419

    PubMed  CAS  Google Scholar 

  • Cane DE, Sohng JK, Lamberson CR, Rudnicki SM, Wu Z, Lloyd MD, Oliver JS, Hubbard BR (1994) Pentalenene synthase purification, molecular cloning, sequencing, and high-level expression in Escherichia coli of a terpenoid cyclase from Streptomyces UC5319. Biochemistry 33:5846–5857

    PubMed  CAS  Google Scholar 

  • Chappell J (1995) The biochemistry and molecular biology of isoprenoid metabolism. Plant Physiol 107:1–6

    PubMed  CAS  Google Scholar 

  • Chappell J, Nable R (1987) Induction of sesquiterpenoid biosynthesis in tobacco cell suspension cultures by fungal elicitor. Plant Physiol 85:469–473

    PubMed  CAS  Google Scholar 

  • Chappell J, Nable R, Fleming P, Andersen RA, Burton HR (1987) Accumulation of capsidiol in tobacco cell cultures treated with fungal elicitor. Phytochemistry 26:2259–2260

    CAS  Google Scholar 

  • Chappell J, Vonlanken C, Vogeli U, Bhatt P (1989) Sterol and sesquiterpenoid biosynthesis during a growth cycle of tobacco cell suspension cultures. Plant Cell Rep 8:48–52

    CAS  Google Scholar 

  • Chappell J, VonLanken C, Vogeli U (1991) Elicitor-inducible 3-hydroxy-3-methylglutaryl coenzyme A reductase activity is required for sesquiterpene accumulation in tobacco cell suspension cultures. Plant Physiol 97:693–698

    PubMed  CAS  Google Scholar 

  • Chen XY, Chen Y, Heinstein P, Davisson VJ (1995) Cloning, expression, and characterization of (+)-δ-cadinene synthase: a catalyst of cotton phytoalexin biosynthesis. Arch Biochem Biophys 324:255–266

    PubMed  CAS  Google Scholar 

  • Clarke CF, Tanaka RD, Svenson K, Wamsley M, Fogelman AM, Edwards PA (1987) Molecular cloning and sequence of a cholesterol-repressible enzyme related to prenyltransferase in the isoprene biosynthetic pathway. Mol Cell Biol 7:3138–3146

    PubMed  CAS  Google Scholar 

  • Conolly JD, Hill RA (1992) Dictionary of terpenoids, vols 1-3. Chapman and Hall, London

    Google Scholar 

  • Coolbear T, Threlfall DR (1985) The biosynthesis of lubimin from [1-14C]isopentenyl pyrophosphate by cell-free extracts of potato tuber tissue inoculation with an elicitor preparation from Phytophthera infestans. Phytochemistry 24:1963–1971

    CAS  Google Scholar 

  • Cordell GA (1976) Biosynthesis of sesquiterpenes. Chem Rev 76:425–460

    CAS  Google Scholar 

  • Croteau R, Gundy A (1984) Cyclization of farnesyl pyrophosphate to the sesquiterpene olefins humulene and caryophyllene by an enzyme system from sage (Salvia officinalis). Arch Biochem Biophys 233:838–841

    PubMed  CAS  Google Scholar 

  • Davis GD, Essenberg M (1995) (+)-δ-Cadinene is a product of sesquiterpene cyclase activity in cotton. Phytochemistry 39:553–567

    CAS  Google Scholar 

  • Davis GD, Eisenbraun EJ, Essenberg M (1991) Tritium transfer during biosynthesis of cadalene stress compounds in cotton. Phytochemistry 30:197–199

    CAS  Google Scholar 

  • Davis GD, Tsuji J, Davis GD, Pierce ML, Essenberg M (1996) Purification of (+)-δ- cadinene synthase, a sesquiterpene cyclase from bacteria-inoculated cotton foliac tissue. Phytochemistry 41:1047–1055

    PubMed  CAS  Google Scholar 

  • Dehal SS, Croteau R (1988) Partial purification and characterization of two sesquiterpene cyclases from sage (Salvia officinalis) which catalyze the respective conversion of farnesyl pyrophosphate to humulene and caryophyllene. Arch Biochem Biophys 261:346–356

    PubMed  CAS  Google Scholar 

  • Desjardins AE, Gardner HW, Plattner RD (1989) Detoxification of the potato phytoalexin lubimin by Gibberella pulicaris. Phytochemistry 28:431–437

    CAS  Google Scholar 

  • Dewick PM (1995) The biosynthesis of C5-C20 terpenoid compounds. Nat Prod Rep 12:507–534

    PubMed  CAS  Google Scholar 

  • Dewick PM (1997) The biosynthesis of C5-C20 terpenoid compounds. Nat Prod Rep 14:111–144

    PubMed  CAS  Google Scholar 

  • Dorsey JK, Dorsey JA, Porter JW (1966) The purification and properties of pig liver gernaly pyrophosphate synthase. J Biol Chem 241:5353–5360

    PubMed  CAS  Google Scholar 

  • Eberhardt NL, Rilling HC (1975) Prenyltransferase from Saccharomyces cerevisiae. Purification to homogeneity and molecular properties. J Biol Chem 250:863–866

    PubMed  CAS  Google Scholar 

  • Essenberg M, Stoessl A, Stothers JB (1985) Biosynthesis of 2,7-dihydroxycadalene in infected cotton cotyledons: the folding of the farnesyl precursor and possible implications for gossypol biosynthesis. Chem Commun 556-557

    Google Scholar 

  • Essenberg M, Grover PB, Cover EC (1990) Accumulation of antibacterial sesquiterpeniod in bacterially inoculated Gossypium leaves and cotyledons. Phytochemistry 29:3107–3113

    CAS  Google Scholar 

  • Facchini PJ, Chappell J (1992) Gene family for an elicitor-induced sesquiterpene cyclase in tobacco. Proc Natl Acad Sci USA 89:11088–11092

    PubMed  CAS  Google Scholar 

  • Fischer NH (1991) Sesquiterpenoid lactones. Methods Plant Biochem 7:187–211

    CAS  Google Scholar 

  • Fischer NH, Olivier EJ, Fischer HD (1979) The biogenesis and chemistry of sesquiterpene lactones. Prog Chem Nat Prod 38:47–390

    CAS  Google Scholar 

  • Fraga BM (1991) Sesquiterpenoids. Methods Plant Biochem 7:145–185

    CAS  Google Scholar 

  • Fraga BM (1995) Natural sesquiterpenoids. Nat Prod Rep 12:303–320

    CAS  Google Scholar 

  • Fraga BM (1996) Natural sesquiterpenoids. Nat Prod Rep 13:307–326

    CAS  Google Scholar 

  • Fraga BM (1997) Natural sesquiterpenoids. Nat Prod Rep 14:145–162

    CAS  Google Scholar 

  • Furze JM, Rhodes MCR, Parr AJ, Robins RJ, Whitehead IM, Threlfall DR (1991) Abiotic factors elicit sesquiterpenoid phytoalexin production but not alkaloid production in transformed root cultures of Datura stamonium. Plant Cell Rep 10:111–114

    CAS  Google Scholar 

  • Gerber NN (1971) Sesquiterpenoids from actinomycetes. Cadin-4-ene-l-ol. Phytochemistry 10:185–189

    CAS  Google Scholar 

  • Gijsen HJM, Wijnberg JBPA, deGroot A (1995) Structure, occurrence, biosynthesis, biological activity, synthesis, and chemistry of aromadendrane sesquiterpenoids. Prog Chem Org Nat Prod 64:149–193

    CAS  Google Scholar 

  • Glasby JS (1982) Encyclopedia of the terpenoids. John Wiley, Chichester, 2643 pp

    Google Scholar 

  • Gonzalez AG, Barrera JB (1995) Chemistry and sources of mono- and bicyclic sesquiterpenes from Ferula species. Prog Chem Org Nat Prod 64:1–92

    CAS  Google Scholar 

  • Gorst-Allmann CP, Steyn PS z(1982) Biosynthesis of PR toxin by Perticillium roqueforti. Part 2. Evidence for a hydride shift from 2H N, M, R, spectroscopy. Tetrahedron Lett 23:5359–5362

    Google Scholar 

  • Govindachari TR, Mohamed PA, Parthasarathi PC (1970) Ishwarane and aristolochene, two new sesquiterpene hydrocarbons from Aristolochia indica. Tetrahydron 26:615–619

    CAS  Google Scholar 

  • Groß D (1977) Phytoalexine und verwandte Pflanzenstoffe. Prog Chem Org Nat Prod 34:187–247

    Google Scholar 

  • Guedes MEM, Kuc J, Hammerschmidt R, Bostock R (1982) Accumulation of six sesquiterpenoid phytoalexins in tobacco leaves infiltrated with Pseudomonas lacgrymans. Phytochemistry 21:2987–2988

    CAS  Google Scholar 

  • Hanley KM, Voegeli U, Chappell J (1992) A study of the isoprenoid pathway in elicitortreated tobacco cell suspension cultures. Environ Sci Res 44:329–336

    CAS  Google Scholar 

  • Harborne JB (1993) Introduction to ecological biochemistry, 4thedn. Academic Press, New York

    Google Scholar 

  • Harborne JB (1995) Ökologische Biochemie, eine Einführung. Spektrum Akademischer Verlag, Heidelberg

    Google Scholar 

  • Harborne JB, Tomas-Barberan FA (eds) (1991) Ecological chemistry of plant terpenoids. Clarendon Press, Oxford, 439 pp

    Google Scholar 

  • Harrison PHM, Oliver JS, Cane DE (1988) Pentalene biosynthesis and the enzymatic cyclization of farnesyl pyrophosphate. Inversion at C-l during 11-membered-ring formation. J Am Chem Soc 110:5922–5923

    CAS  Google Scholar 

  • Hendrickson JB (1959) Stereochemical implications in sesquiterpene biogenesis. Tetrahedron 7:82–89

    CAS  Google Scholar 

  • Hohn TM, Plattner RD (1989) Purification and characterization of the sesquiterpene cyclase aristolochene synthase from Penicillium roqueforti. Arch Biochem Biophys 272:137–143

    PubMed  CAS  Google Scholar 

  • Hoshino T, Chida M, Yamaura T, Yoshizawa Y, Mizutani J (1994) Phytoalexin induction in green pepper cell cultures treated with arachidonic acid. Phytochemistry 36:1417–1419

    CAS  Google Scholar 

  • Hoshino T, Yamaura T, Imaishi H, Chida M, Yoshizawa Y, Higashi K, Ohkawa H, Mizutani J (1995) 5-epi-Aristolochene 3-hydoxylase from green pepper. Phytochemistry 38:609–613

    CAS  Google Scholar 

  • Hugueney P, Camara B (1990) Purification and characterization of farnesyl pyrophosphate synthase from Capsicum annuum. FEBS Lett 273:235–238

    PubMed  CAS  Google Scholar 

  • Joly A, Edwards PA (1993) Effect of site-directed mutagenesis of conserved aspartate and arginine residues upon farnesyl diphosphate synthase activity. J Biol Chem 268:26983–26989

    PubMed  CAS  Google Scholar 

  • Kalan EB, Osman SF (1976) Isolubimin: a possible precursor of lubimin in infected potato slices. Phytochemistry 15:775–776

    CAS  Google Scholar 

  • Katsui N, Yagihasi F, Murai A, Masamune T (1978) Structure of oxyglutinosone and epioxylubimin, stress metabolites from diseased potato tubers. Chem Lett 1205-1206

    Google Scholar 

  • Koyama T, Saito K, Ogura K, Obata S, Takeshita A (1993a) Site-directed mutagenesis of farnesyl diphosphate synthase: effect of substitution on the three carboxyl-terminal amino acids. Can J Chem 72:75–79

    Google Scholar 

  • Koyama T, Obata S, Osabe M, Takeshita A, Yokoyama K, Uchida M, Nishino T, Ogura K (1993b) Thermostable farnesyl diphosphate synthase of Bacillus stearothermophilus: molecular cloning, sequence determinating, overproduction and purification. J Biochem (Tokyo) 113:355–363

    CAS  Google Scholar 

  • Koyama T, Obata S, Osabe M, Saito K, Takeshita A, Nishino T, Ogura K (1994a) Thermostable farnesyl diphosphate synthase of Bacillus stearothermophilus: crystallization and site-directed mutagenese. Acta Biochim Pol 4:281–291

    Google Scholar 

  • Koyama T, Obata S, Saito K, Takeshita-Koike A, Ogura K (1994b) Structural and functional roles of the cysteine residues of Bacillus stearothermophilus farnesyl diphosphate synthase. Biochemistry 33:12644–12648

    PubMed  CAS  Google Scholar 

  • Koyama T, Tajima M, Nishino T, Ogura K (1995) Significance of phe-200 and gln-221 in the catalytic mechanism of farnesyl diphosphate synthase of Bacillus stearothermophilus. Biochem Biophys Res Commun 212:681–686

    PubMed  CAS  Google Scholar 

  • Koyama T, Tajima M, Sano H, Doi T, Koike-Takeshita A, Obata S, Nishino T, Ogura K (1996) Identification of significant residues in the substrate-binding site of Bacillus stearothermophilus farnesyl diphosphate synthase. Biochemistry 35:9533–9538

    PubMed  CAS  Google Scholar 

  • Lawrence BM, Hogg JW (1973) Ishwarane in Bixa orellana leaf oil. Phytochemistry 12:2995

    CAS  Google Scholar 

  • Lesburg CA, Lloyd MD, Cane DE, Christianson DW (1995) Chrystallization and preliminary X-ray diffraction analysis of recombinant pentalenene synthase. Protein Sci 4:2436–2438

    PubMed  CAS  Google Scholar 

  • Marrero PF, Poulter CD, Edwards PA (1992) Effects of site-directed mutagenesis of the highly conserved aspartate residues in domain II of farnesyl diphosphate synthase activity. J Biol Chem 267:21873–21878

    PubMed  CAS  Google Scholar 

  • McGarvey SJ, Croteau R (1995) Terpenoid metabolism. Plant Cell 7:1015–1026

    PubMed  CAS  Google Scholar 

  • Nabeta K, Katayama K, Nakagawara S, Katoh K (1993) Sesquiterpenes of cadinane type from cultured cells of the liverwort, Heteroscyphus planus. Phytochemistry 32:117–122

    Google Scholar 

  • Nabeta K, Mototani Y, Tazaki H, Okuyama (1994a) Biosynthesis of sesquiterpenes of cadinane type in cultured cells of Heteroscyphus planus. Phytochemistry 35:915–920

    CAS  Google Scholar 

  • Nabeta K, Ishikawa T, Kawae T, Okuyama (1994b) Biosynthesis of (lS)-7-methoxy-l,2- dihydrocadalene. Incorporation of 2H- and 13C-labelled mevanolates by cultured cells of Heteroscyphus planus. J Chem Soc Perkin Trans 1:3277–3280

    Google Scholar 

  • Nabeta K, Kigure K, Fujita M, Nagoya T, Ishikawa T, Okuyama H, Takasawa T (1995) Biosynthesis of (+)-cubenene and (+)-epicubenol by cell-free extracts of cultured cells of Heteroscyphus planus and cyclization of [2H] farnesyl diphosphate. J Chem Soc Perkin Trans 1:1935–1939

    Google Scholar 

  • Pieman AK (1984) Antifungal activity of the sesquiterpene lactones. Biochem System Ecol 12:13–19

    Google Scholar 

  • Pieman AK (1986) Biological activities of sesquiterpene lactones. Biochem Syst Ecol 14:255–281

    Google Scholar 

  • Pierce M, Essenberg M (1987) Localization of phytoalexins in fluorescent mesophyll cells isolated from bacterial blight-infected cotton cotyledons and separated from other cells by fluorscence-activated cell sorting. Physiol Mol Plant Pathol 31:273–290

    CAS  Google Scholar 

  • Pinder AR (1977) The chemistry of the eremophilane and related sesquiterpenes. Prog Chem Org Nat Subst 34:81–186

    CAS  Google Scholar 

  • Poulter CD, Rilling HC (1981) Prenyl transferases and isomerases. In: Porter JW, Spurgeon SL (eds) Biosynthesis of isoprenoid compounds, vol 1. Wiley, New York, pp 161–224

    Google Scholar 

  • Proctor RH, Hohn TM (1993) Aristolochene synthase: isolation, characterization, and bacterial expression of a sesquiterpenoid biosynthetic gene (Ari 1) from Penicillium roqueforti. J Biol Chem 268:4543–4548

    PubMed  CAS  Google Scholar 

  • Reed BO, Rilling HC (1975) Crystallization and partial Characterization of prenyltransferase from avian liver. Biochemistry 14:50–54

    PubMed  CAS  Google Scholar 

  • Rodriguez E, Towers GAN, Mitchell JC (1976) Biological activities of sesquiterpene lactones. Phytochemistry 15:1573–1580

    CAS  Google Scholar 

  • Rodriguez E, Healey PL, Mehta I (1984) Biology and chemistry of plant trichomes. Plenum, New York

    Google Scholar 

  • Ruzicka L (1953) The isoprene rule and the biogenesis of terpenic compounds. Experientia 9:357–367

    PubMed  CAS  Google Scholar 

  • Sato K, Ishiguri Y, Doke N, Tomiyama K, Yagishashi F, Murai A, Katsui N, Masamume T (1978) Biosynthesis of the sesquiterpenoid phytoalexin rishitin from acetate via oxylubimin in potato. Phytochemistry 17:1901–1902

    CAS  Google Scholar 

  • Seaman FC (1982) Sesquiterpene lactones as taxonomic characters in the Asteraceae. Bot Rev 48:121–595

    CAS  Google Scholar 

  • Sheares BT, White SS, Molowa DT, Chan K, Ding VDH; Kroon PA, Bostedor RG, Karkas JD (1989) Cloning, analysis, and bacterial expression of human farnesyl pyrophosphate synthetase and its regulation in Hep G2 cells. Biochemistry 28:8129–8135

    PubMed  CAS  Google Scholar 

  • Song L, Poulter CD (1994) Yeast farnesyl-diphosphate synthase: site-directed mutagenesis of residues in highly conserved prenyltransferase domains I and II. Proc Natl Acad Sci USA 91:3044–3048

    PubMed  CAS  Google Scholar 

  • Spring O, Bienert U (1987) Capitate glandular hairs from sunflower leaves: development, distribution and sesquiterpene lactone content. J Plant Physiol 130:441–448

    CAS  Google Scholar 

  • Stoessl A (1980) Phytoalexins - a biogenetic perspective. Phytopathol Z 99:251–272

    CAS  Google Scholar 

  • Stoessl A, Stothers JB (1980) Postinfectional inhibitors from plants. XXXVI. 2-epi and 15- dihydro-2-epi-Lubimin: new stress compounds from the potato. Can J Chem 58:2069–2072

    CAS  Google Scholar 

  • Stoessl A, Stothers JB (1981) Postinfectional inhibitors from plants. XXXVII.A carbon-13 biosynthetic study of stress metabolites from potatoes: the origin of isolubimin. Can J Bot 59:637–639

    CAS  Google Scholar 

  • Stoessl A, Stothers JB (1982) The beta-hop: acetate-2-13C-d3 as a probe for 1,2-hydride shifts in the biosynthesis of natural products. Chem Commun 880-881

    Google Scholar 

  • Stoessl A, Stothers JB (1983) Carbon-13 magnetic resonance studies. 104. Postinfectional inhibitors from plants. 44. Biosynthesis of antifungal stress metabolites from potato: observation of hydride shifts via beta-hop from incorporation of [2-2H3,2-13C] acetate and carbon-13 magnetic resonance. Can J Chem 61:1766–1770

    CAS  Google Scholar 

  • Stoessl A, Unwin CH, Ward EWB (1973) Postinfectional fungus inhibitors from plants. Fungal oxidation of capsidiol in pepper fruit. Phytopathology 63:1225–1231

    CAS  Google Scholar 

  • Stoessl A, Stothers JB, Ward EWB (1976a) Sesquiterpenoid stress compounds of the Solanaceae. Phytochemistry 15:855–872

    CAS  Google Scholar 

  • Stoessl A, Ward EWB, Stothers JB (1976b) Incorporation of doubly labeled sodium acetate- 13C2 into phytuberin and other sesquiterpenes in potatoes: experimental conformation of postulated carbon-carbon cleavage. Tetrahedron Lett 37:3241–3244

    Google Scholar 

  • Stoessl A, Robinson JR, Rock GL, Ward EWB (1977) Metabolism of capsidiol by sweet pepper tissue: some possible implications of phytoalexin studies. Phytopathology 67:64–66

    CAS  Google Scholar 

  • Stoessl A, Stothers JB, Ward EWB (1978) Carbon-13 NMR studies. Part 76. Postinfectional inhibitors from plants. XXIX. Biosynthetic studies of stress metabolites from potatoes: incorporation of sodium acetate-13C2 into 10 sesquiterpenes. Can J Chem 56:645–653

    CAS  Google Scholar 

  • Sugawara F, Strobel G, Fisher LE, VanDuyne GD, Clardy J (1985) Bipolaroxin, a selective phytotoxin produced by Bipolaris cynodontis. Proc Natl Acad Sci USA 82:8291–8294

    PubMed  CAS  Google Scholar 

  • Tarshis LC, Yan M, Poulter CD, Sacchettini JC (1994) Crystal structure of recombinant farnesyl diphosphate synthase at 2,6-A resolution. Biochemistry 33:10871–10877

    PubMed  CAS  Google Scholar 

  • Threlfall DR, Whitehead IM (1988a) Co-ordinated inhibition of squalene synthetase and induction of enzymes of sesquiterpenoid phytoalexin biosynthesis in cultures of Nicotiana tabacum. Phytochemistry 27:2567–2580

    CAS  Google Scholar 

  • Threlfall DR, Whitehead IM (1988b) The use of biotic and abiotic elicitors to induce the formation of secondary plant products in cell suspension cultures of solanaceous plants. Biochem Soc Trans 16:71–75

    CAS  Google Scholar 

  • Threlfall DR, Whitehead IM (1991) Terpenoid phytoalexins: aspects of biosynthesis, catabolism and regulation. Proc Phytochem Soc Eur 31:159–208

    CAS  Google Scholar 

  • Tomita B, Hirose Y (1972) Identity of cadinenol with (+)-epi-cubenol. Phytochemistry 11:3355–3357

    CAS  Google Scholar 

  • Vögeli U, Chappell J (1988) Induction of sequiterpene cyclase and suppression of squalene synthase activity in plant cell cultures treated with fungal elicitor. Plant Physiol 88:1291–1296

    PubMed  Google Scholar 

  • Vögeli U, Chappell L (1990) Regulation of a sesquiterpene cyclase in cellulase-treated tobacco cell suspension cultures. Plant Physiol 94:1860–1866

    PubMed  Google Scholar 

  • Vögeli U, Chappell J (1991) Inhibition of a plant sesquiterpene cyclase by mevilonin. Arch Biochem Biophys 288:157–162

    PubMed  Google Scholar 

  • Vögeli U, Freeman JW, Chappell J (1990) Purification and characterization of an inducible sesquiterpene cyclase from elicitor-treated tobacco cell suspension cultures. Plant Physiol 93:182–187

    PubMed  Google Scholar 

  • Ward EWB, Stoessl A (1972) Postinfectional inhibitors from plants III. Detoxification of capsidiol, an antifungal compound from peppers. Phytopathology 62:1186–1187

    CAS  Google Scholar 

  • Ward EWB, Stoessl A (1977) Phytoalexins from potatoes: evidence for the conversion of lubimin to 15-dihydrolubimin by fungi. Phytopathology 67:468–471

    CAS  Google Scholar 

  • Ward EWB, Unwin CH, Stoessl A (1973) Capsidiol production in pepper fruit infected with bacteria. Phytopathology 63:1537–1538

    CAS  Google Scholar 

  • Ward EWB, Unwin CH, Rock GL, Stoessl A (1976) Post-infectional inhibitors from plants XXIII. Sesquiterpenoid phytoalexins from fruits capsules of Datura stramonium. Can J Bot 54:25–29

    CAS  Google Scholar 

  • Ward EWB, Stoessl A, Stothers JB (1977) Metabolism of the sesquiterpenoid phytoalexins capsidiol and rishitin to their 13-hydroxy derivatives by plant cells. Phytochemistry 16:2024–2025

    CAS  Google Scholar 

  • Watson DG, Brooks CJW (1984) Formation of capsidiol in Capsicum annuum fruits in response to non-specific elicitors. Physiol Plant Pathol 24:331–337

    CAS  Google Scholar 

  • Watson DG, Rycroft DS, Freer IM, Brooks CJW (1985) Sesquiterpenoid phytoalexins from suspended callus cultures of Nicotiana tabacum. Phytochemistry 24:2195–2200

    CAS  Google Scholar 

  • Whitehead IM, Threlfall DR (1992) Production of phytoalexins by plant tissue cultures. J Biotechnol 26:63–81

    CAS  Google Scholar 

  • Whitehead IM, Threlfall DR, Ewing DF (1987) cis-9,10-dihydrocapsenone; a possible catabolite of capsidiol from cell suspension cultures of Capsicum annuum. Phytochemistry 26:1367–1369

    CAS  Google Scholar 

  • Whitehead IM, Ewing DF, Threlfall DR (1988) Sesquiterpenoids related to the phytoalexin debneyol from elicited cell suspension cultures of Nicotiana tabacum. Phytochemistry 27:1365–1370

    CAS  Google Scholar 

  • Whitehead IM, Threlfall DR, Ewing DF (1989) 5-epi-Aristolochene is a common precursor of the sesquiterpenoid phytoalexins capsidiol and debneyol. Phytochemistry 28:775–779

    CAS  Google Scholar 

  • Whitehead IM, Ewing DF, Threlfall DR, Cane DE, Prabhakaran PC (1990a) Synthesis of (+)-5-epi-aristolochene and (-f)-l-deoxycapsidiol from capsidiol. Phytochemistry 29:479–482

    CAS  Google Scholar 

  • Whitehead IM, Atkinson AL, Threlfall DR (1990b) Studies on the biosynthesis and metabolism of the phytoalexin lubimin and related compounds in Datura stramonium L. Planta 182:81–88

    CAS  Google Scholar 

  • Yeh LS, Rilling HC (1977) Purification and properties of pig liver prenyltransferase: interconvertible forms of the enzymes. Arch Biochem Biophys 183:718–725

    PubMed  CAS  Google Scholar 

  • Yoshizawa Y, Yamaura T, Kawaii S, Hoshino T, Mizutani J (1994) Incorporation of 13Clabeled 5-epi-aristolochene into capsidiol in green pepper seedlings. Biosci Biotechnol Biochem 58:305–308

    CAS  Google Scholar 

  • Zook MN, Kuc JA (1991) Induction of sesquiterpene cyclase and suppression of squalene synthetase activity in elicitor-treated or fungal-infected potato tuber tissue. Physiol Mol Plant Pathol 39:377–390

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schütte, HR. (1999). Secondary Plant Substances: Sesquiterpenes. In: Esser, K., Kadereit, J.W., Lüttge, U., Runge, M. (eds) Progress in Botany. Progress in Botany, vol 60. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59940-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59940-8_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64189-3

  • Online ISBN: 978-3-642-59940-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics