Skip to main content

Abstract

The force on a dislocation or point defect, as understood in solid-state physics, and the crack extension force of fracture mechanics are examples of quantities which measure the rate at which the total energy of a physical system varies as some kind of departure from uniformity within it changes its configuration. One may define similarly a force acting on each element of a mobile interface (a phase boundary or martensitic interface, for example).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Burton, C. V.: Phil Mag., (5) 33:191 (1892).

    Google Scholar 

  • Weiner, J. H.: J. Appi Phys., 29:1305 (1958).

    Article  ADS  Google Scholar 

  • Eshelby, J. D.: Phil. Trans., A244:87 (1951).

    Google Scholar 

  • Hill, E. L.: Rev. Mod. Phys., 23:253 (1951).

    Article  ADS  MATH  Google Scholar 

  • Corson, E. M.: “Introduction to Tensors, Spinors, and Relativistic Wave-Equations,” p. 65, Blackie and Son, London and Glasgow, 1953.

    Google Scholar 

  • Bilby, B. A.: in I. N. Sneddon and R. Hill (eds.), “Prog. Solid Mech.,” vol. 1, p. 331, North-Holland Publishing Company, Amsterdam, 1960.

    Google Scholar 

  • Timoshenko, S., and J. N. Goodier: “Theory of Elasticity,” p. 425, McGraw-Hill Book Company, New York, 1951.

    Google Scholar 

  • Morse, P. M., and H. Feshbach: “Methods of Theoretical Physics,” p. 323, McGraw-Hill Book Company, New York, 1953.

    Google Scholar 

  • Rice, J. R.: J. Appi Mech., 35:379 (1968).

    Google Scholar 

  • Eshelby, J. D.: in F. Seitz and D. Turnbull (eds.), “Prog. Solid State Physics,” vol. 3, p. 79,1956.

    Google Scholar 

  • —: in E. M. Rassweiler and W. L. Grube (eds.), “Internal Stresses and Fatigue in Metals,” p. 41, North-Holland Publishing Company, Amsterdam, 1959.

    Google Scholar 

  • Ardell, A. J., and R. B. Nicholson: Acta Met., 14:1295 (1966).

    Article  Google Scholar 

  • Nabarro, F. R. N.: “Theory of Crystal Dislocations,” Oxford University Press, 1967.

    Google Scholar 

  • Truesdell, C., and R. Toupin: in S. Flügge (ed.), “Encyclopedia of Physics,” vol. 3/1, p. 495, Springer-Verlag, Berlin, 1960.

    Google Scholar 

  • Schweinsfeir, R. J., and C. Elbaum: J. Phys. Chem. Solids, 28:597 (1967).

    Article  ADS  Google Scholar 

  • Thomas, L. A., and W. A. Wooster: Proc. Roy. Soc., A208:43 (1951).

    ADS  Google Scholar 

  • Hill, R.: in I. N. Sneddon and R. Hill (eds.), “Prog. Solid Mech.,” vol. 2, p. 247, North-Holland Publishing Company, Amsterdam, 1961.

    Google Scholar 

  • Rice, J. R., and D. C. Drucker: Int. J. Fracture Mech., 3:19 (1967).

    Google Scholar 

  • Truesdell, C.: J. Rat. Mech. Analysis, 1:178 (1952).

    MathSciNet  Google Scholar 

  • Post, E. J.: Phys. Rev., 118:1113 (1960).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Love, A. E. H.: “Mathematical Theory of Elasticity,” p. 177, Cambridge University Press, 1927.

    MATH  Google Scholar 

  • Brenig, W.: Z. Phys., 143:168(1955).

    Google Scholar 

  • Irwin, G. R.: J. Appi Mech., 24:361 (1957).

    Google Scholar 

  • Barenblatt, G. I.: in H. L. Dryden and Th. von Karman (eds.), “Adv. Appi. Mech.,” vol. 7, p. 56, 1962.

    Google Scholar 

  • Bilby, B. A., and J. D. Eshelby: in H. Liebowitz (ed.), “Fracture,” vol. 1, p. 99, Academic Press, Inc., New York, 1968.

    Google Scholar 

  • Cherepanov, G. P.: Int. J. Solids Structures, 4:811 (1968).

    Article  MATH  Google Scholar 

  • Rice, J. R.: in H. Liebowitz (ed.), “Fracture,” vol. 2, p. 191, Academic Press, Inc., New York, 1968.

    Google Scholar 

  • Dugdale, D. S.: J. Mech. Phys. Solids, 8:100 (1960).

    Article  ADS  Google Scholar 

  • Bilby, B. A., A. H. Cottrell, and K. H. Swinden: Proc. Roy. Soc., A272:304 (1963).

    ADS  Google Scholar 

  • Craggs, J. W.: “Fracture of Solids,” p. 51, Interscience, New York, 1963.

    Google Scholar 

  • Atkinson, C., and J. D. Eshelby: Int. J. Fracture Mech., 4:3 (1968).

    Google Scholar 

  • Eshelby, J. D.: Proc. Roy. Soc., A266:222 (1962).

    Google Scholar 

  • —:Phys. Rev., 90:248 (1953).

    Google Scholar 

  • Nabarro, F. R. N.: Proc. Roy. Soc., A209:278 (1951).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Eshelby, J. D.: J. Mech. Phys. Solids, 17:177 (1969).

    Article  ADS  MATH  Google Scholar 

  • —: in A. S. Argon (ed.), “Physics of Strength and Plasticity,” Massachusetts Institute of Technology Press, Cambridge, 1969

    Google Scholar 

  • Congleton, J., and N. J. Petch: PhiL Mag., 16:749 (1967).

    Article  ADS  Google Scholar 

  • Smith, E.: J. Mech. Phys. Solids, 16:329 (1968).

    Article  ADS  Google Scholar 

  • Yoffe, E. H.: PhiL Mag., 42:739 (1951).

    MathSciNet  MATH  Google Scholar 

  • McClintock, F. A., and S. P. Sukhatame: J. Mech. Phys. Solids, 8:187 (1960).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Roberts, D. K., and A. A. Wells: Engineering, 178:820 (1954).

    Google Scholar 

  • Hutchinson, J. W.:J. Mech. Phys. Solids, 16:13 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelbergs

About this chapter

Cite this chapter

Eshelby, J.D. (1999). Energy Relations and the Energy-Momentum Tensor in Continuum Mechanics. In: Ball, J.M., Kinderlehrer, D., Podio-Guidugli, P., Slemrod, M. (eds) Fundamental Contributions to the Continuum Theory of Evolving Phase Interfaces in Solids. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59938-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59938-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64188-6

  • Online ISBN: 978-3-642-59938-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics