Skip to main content

Abstract

This paper treats degenerate parabolic equations of second order

$$u_t + F(\nabla u,\nabla ^2 u) = 0$$
((14.1))

related to differential geometry, where ∇ stands for spatial derivatives of u = u{t,x) in xR n , and u t represents the partial derivative of u in time t. We are especially interested in the case when (1.1) is regarded as an evolution equation for level surfaces of u. It turns out that (1.1) has such a property if F has a scaling invariance

$$F(\lambda p,\lambda X + \sigma p \otimes p) = \lambda F(p.X),\,\,\,\,\,\,\lambda > 0,\,\,\sigma \in \mathbb{R}$$
((14.2))

for a nonzero pR n and a real symmetric matrix X, where ⊗ denotes a tensor product of vectors in R n. We say (1.1) is geometric if F satisfies (1.2). A typical example is

$$u_t - \left| {\nabla u} \right|div(\nabla u/\left| {\nabla u} \right|) = 0,$$
((14.3))

where ∇u is the (spatial) gradiant of u. Here ∇u/|∇u| is a unit normal to a level surface of u, so div (∇u/|∇u|) is its mean curvature unless ∇u vanishes on the surface. Since u t /\∇u\ is a normal velocity of the level surface, (1.3) implies that a level surface of solution u of (1.3) moves by its mean curvature unless ∇u vanishes on the surface. We thus call (1.3) the mean curvature flow equation in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • U. Abresch & J. Langer, The normalized curve shortening flow and homothetic solutions, J. Differential Geometry 23 (1986) 175–196.

    MathSciNet  MATH  Google Scholar 

  • A. D. Alexandroff, Almost everywhere existence of the second differential of a convex function and some properties of convex surfaces connected with it, Leningrad Gos. Univ. Uchen. Zap. Ser. Mat. Nauk. 6 (1939) 3–35. (Russian)

    Google Scholar 

  • S. Angenent, Parabolic equations for curves on surfaces. II: Intersections, blow up and generalized solutions, CMS-Technical Summary Report #89–24, Univ. of Wisconsin.

    Google Scholar 

  • K. A. Brakke, The motion of a surface by its mean curvature, Princeton Univ. Press, Princeton, NJ, 1978.

    Google Scholar 

  • Y.-G. Chen, Y. Giga & S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, Proc. Japan Acad. Ser. A 65 (1989) 207–210

    Article  MathSciNet  MATH  Google Scholar 

  • M. G. Crandall, Semidifferentials, quadratic forms and fully nonlinear elliptic equations of second order, Ann. Inst. H. Poincaré Anal. Non Linéare 6 (1989) 419–435.

    MATH  Google Scholar 

  • P. Dupuis & H. Ishii, On oblique derivative problems for fully nonlinear second order elliptic PDE’s on nonsmooth domain, preprint

    Google Scholar 

  • C. Epstein & M. Weinstein, A stable manifold theorem for the curve shortening equation, Comm. Pure Appi. Math. 40 (1987) 119–139

    MathSciNet  MATH  Google Scholar 

  • L. C. Evans & J. Spruck, Motion of level sets by mean curvature., I, this issue, pp. 635-681

    Google Scholar 

  • M. Gage & R. Hamilton, The heat equation shrinking of convex plane curves, J. Differential Geometry 23 (1986) 69–96

    MathSciNet  MATH  Google Scholar 

  • E. De Giorgi, Convergence problems for functionals and operators, Proc. Internat. Meeting on Recent Methods in Nonlinear Analysis (E. De Georgi et al., eds.), Pitagora Editrice, Bologna, 1979, 131–188

    Google Scholar 

  • M. Grayson, The heat equation shrinks embedded plane curves to round points, J. Differential Geometry 26 (1987) 285–314

    MathSciNet  MATH  Google Scholar 

  • M. Gurtin, Towards a nonequilibrium thermodynamics of two-phase materials, Arch. Rational Mech. Anal. (1988) 275–312

    MathSciNet  MATH  Google Scholar 

  • G. Huisken, Flow by mean curvature of convex surfaces into spheres, J. Differential Geometry 20 (1984) 237–266.

    MathSciNet  MATH  Google Scholar 

  • Asymptotic behavior for singularities of the mean curvature flow, J. Differential Geometry 31 (1990) 285–299

    MathSciNet  MATH  Google Scholar 

  • H. Ishii, Perron’s method for Hamilton-Jacobi equations, Duke Math. J. 55 (1987) 369–384

    MATH  Google Scholar 

  • On uniqueness and existence of viscosity solutions of fully nonlinear second order elliptic PDE’s, Comm. Pure Appi. Math. 42 (1989) 15–45.

    Article  MATH  Google Scholar 

  • H. Ishii & P. L. Lions, Viscosity solutions of fully nonlinear second-order elliptic partialdifferential equations, J. Differential Equations 83 (1990) 26–78

    Article  MathSciNet  MATH  Google Scholar 

  • R. Jensen, The maximum principle for viscosity solutions of fully nonlinear second-order partial differential equations, Arch. Rational Mech. Anal. 101 (1988) 1–27

    MATH  Google Scholar 

  • R. Jensen, P. L. Lions & P. E. Souganidis, A uniqueness result for viscosity solutions of second order fully nonlinear partial differential equations, Proc. Amer. Math. Soc. 102 (1988) 975–978

    Article  MathSciNet  MATH  Google Scholar 

  • J. M. Lasry & P. L. Lions, A remark on regularization in Hilbert spaces, Israel J. Math. 55 (1986) 257–266.

    MathSciNet  MATH  Google Scholar 

  • P. L. Lions, Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations, Part II: Viscosity solutions and uniqueness, Comm. Partial Differential Equations 8 (1983) 1229–1276

    Article  MATH  Google Scholar 

  • P. de Mottoni & M. Schatzman, Evolution géométrie d’interfaces, C.R. Acad. Sci. ParisSér. I Math. 309 (1989) 453–458

    MATH  Google Scholar 

  • D. Nunziante, Uniqueness of viscosity solutions of fully nonlinear second order parabolicequations with noncontinuous time-dependence, Differential Integral Equations 3 (1990) 77–91

    MathSciNet  MATH  Google Scholar 

  • S. Osher & J. A. Sethian, Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations, J. Computational Phys. 79 (1988) 12–49

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • J. A. Sethian, Numerical algorithms for propagating interfaces: Hamilton-Jacobi equations and conservation laws, J. Differential Geometry 31 (1990) 131–161.

    MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chen, YG., Giga, Y., Goto, S. (1999). Uniqueness and Existence of Viscosity Solutions of Generalized mean Curvature Flow Equations. In: Ball, J.M., Kinderlehrer, D., Podio-Guidugli, P., Slemrod, M. (eds) Fundamental Contributions to the Continuum Theory of Evolving Phase Interfaces in Solids. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59938-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59938-5_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64188-6

  • Online ISBN: 978-3-642-59938-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics