Skip to main content

The Structure of Maximal Finite Primitive Matrix Groups

  • Conference paper
Algorithmic Algebra and Number Theory
  • 406 Accesses

Abstract

Solving equations belongs to the oldest problems in mathematics. In a wider sense, analyzing a group presentation belongs to this class of problems, because one wants to know the most general solutions of the defining relations. It is well known that there is no general procedure to solve the word problem by the famous Novikov-Boone Theorem, cf. [30] Chapter 13 for an exposition. Even deciding the question whether G is finite or infinite cannot be solved in general. Nevertheless, one can try to prove that G is infinite, if one suspects this, by solving the equations given by the relators in some group, where one can compute, for example in a matrix group. In case of success this produces an epimorphic image of G which might be infinite. And even if it is finite, one might use the representations of the finite quotient to produce bigger epimorphic images. Various techniques for carrying out these ideas have been developed over the last years. They will be described in the next few chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Brückner, Algorithmen fü endliche auftosbare Gruppen und Anwendungen, in preparation.

    Google Scholar 

  2. J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups, Oxford University Press 1985.

    MATH  Google Scholar 

  3. J. D. Dixon, Computing irreducible representations of groups, Math. Compo 24(1970), 112.

    Google Scholar 

  4. J. D. Dixon, M. P. F. du Sautoy, A. Mann, D. Segal, Analytic pro-p groups, LMS Lecture Note Series 157, 1991.

    Google Scholar 

  5. B. Fein, Minimal splitting fields for group representations, Pacific J. Math. 51 (1974), 427–431.

    MathSciNet  MATH  Google Scholar 

  6. B. Fein, Minimal splitting fields for group representations II, Pacific J. Math. 77 (1978), 445–449.

    MathSciNet  MATH  Google Scholar 

  7. W. Gaschiitz, M. F. Newman, On presentations of finite p-groups, J. reine angew. Math. 245 (1970), 172–176.

    Article  MathSciNet  Google Scholar 

  8. D. F. Holt, The Warwick automatic groups software, in Geometrical and Computational Perspectives on Infinite Groups, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 25, ed. G. Baumslag et al. 1995, pp. 69-82.

    Google Scholar 

  9. D. F. Holt, D. F. Hurt, Computing automatic coset systems and subgroup presentations, submitted to J. Symb. Comput.

    Google Scholar 

  10. D. F. Holt, W. Plesken, Perfect groups, Oxford University Press 1992.

    Google Scholar 

  11. D. F. Holt, W. Plesken, A cohomological criterion for a finitely presented group to be infinite, J. London Math. Soc. 45 (1992), 469–480.

    Article  MathSciNet  MATH  Google Scholar 

  12. D. F. Holt, W. Plesken, B. Souvignier, Constructing a representation of the group (2, 3, 7; 11), J. Symb. Comput. 24 (1997), 489–492.

    Article  MathSciNet  MATH  Google Scholar 

  13. D. F. Holt, S. Rees, Testing modules for irreducibility, J. Australian Math. Soc. Ser. A 57 (1994), 1–16.

    Article  MathSciNet  MATH  Google Scholar 

  14. D. F. Holt, S. Rees, A graphical system for displaying finite quotients of finitely presented groups, Groups and Computations, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 11, AMS 1995, pp. 113-126.

    Google Scholar 

  15. S. A. Linton, Constructing matrix representations of finitely presented groups, J. Symb. Comput. 12 (1991), 427–438.

    Article  MathSciNet  MATH  Google Scholar 

  16. S. A. Linton, On vector enumeration, Linear Algebra Appl. 192 (1993), 235–248.

    Article  MathSciNet  MATH  Google Scholar 

  17. F. Lorenz, Öber die Berechnung von Schurschen Indizes von Charakteren endlicher Gruppen, J. Number Theory 3 (1971), 60–103.

    Article  MathSciNet  MATH  Google Scholar 

  18. C. Jansen, K. Lux, R. Parker, R. Wilson, An atlas of Brauer characters, London Math. Soc. Monogr. New Series 11, Oxford 1995.

    Google Scholar 

  19. M. Pohst et al., KANT- V2, pp. 212‐218 in Computer Algebra in Deutschland, (1993) ed. by Fachgruppe Computeralgebra der GI, DMV und GAMM.

    Google Scholar 

  20. G. Klaas, C. R. Leedham-Green, W. Plesken, Linear pro-p-groups of finite width, Springer Lecture Notes in Math. 1674, 1997.

    Google Scholar 

  21. A. K. Lenstra, H. W. Lenstra, L. Lovaas, Factoring polynomials with rational coefficients, Math. Ann. 261 (1982), 515–534.

    Article  MathSciNet  MATH  Google Scholar 

  22. E. H. Lo, A polycyclic quotient algorithm, J. Symb. Comput., to appear.

    Google Scholar 

  23. R. A. Mollin, Minimal cyclotomic splitting fields for group characters, Proc. Amer. Math. Soc. 91 (1984), 359–363.

    Article  MathSciNet  MATH  Google Scholar 

  24. R. A. Parker, The computer calculation of modular characters (The meat-axe), pp. 267–274 in Computational Group Theory: Proceedings of the London Math. Soc. Symposium (ed. by M.D. Atkinson), Academic Press, London, 1984.

    Google Scholar 

  25. R. A.Parker, An integral meataxe, to appear in the proceedings of “The Atlas 10 Years On” (ed. by R. T.Curtis, R. A.Wilson, LMSLectureNotes.

    Google Scholar 

  26. W. Plesken, Towards a soluble quotient algorithm, J. Symb. Comput. 4 (1987), 111–122.

    Article  MathSciNet  MATH  Google Scholar 

  27. W. Plesken, B. Souvignier, Constructing rational representations of finite groups, Exp. Math. 5 (1996), 39–48.

    MathSciNet  MATH  Google Scholar 

  28. W. Plesken, B. Souvignier, Analyzing finitely presented groups by constructing representations, J. Symb. Comput. 24 (1997), 335–350.

    Article  MathSciNet  MATH  Google Scholar 

  29. W. Plesken, B. Souvignier, Constructing representations of finite groups and applications to finitely presented groups, J. Algebra, to appear.

    Google Scholar 

  30. J. J. Rotman, An introduction to the theory of groups, Third Edition, Allyn and Bacon Inc. 1984.

    MATH  Google Scholar 

  31. M. Schonert (ed.), GAP - Groups, algorithms, and programming, Lehrstuhl D £iir Mathematik, RWTH Aachen.

    Google Scholar 

  32. T. Schulz, Algorithmische Bewertung von Relatoren, Diplomarbeit RWTH Aachen, Lehrstuhl B fü Mathematik 1996.

    Google Scholar 

  33. S. Sidki, Solving certain group equations in PGL(2, k) - a computational approach, Mathemathica Contemporanea 7 (1994), 59–70.

    MathSciNet  MATH  Google Scholar 

  34. C. C. Sims, Computation with finitely presented groups, Cambridge Univ. Press 1994.

    Book  MATH  Google Scholar 

  35. H. Zassenhaus, Uber einen Algorithmus zur Bestimmung der Raumgruppen, Comment. Math. Helv. 21 (1948), 117–141.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nebe, G. (1999). The Structure of Maximal Finite Primitive Matrix Groups. In: Matzat, B.H., Greuel, GM., Hiss, G. (eds) Algorithmic Algebra and Number Theory. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59932-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59932-3_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64670-9

  • Online ISBN: 978-3-642-59932-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics