Skip to main content

Nerve Growth Factor Treatment for Alzheimer’s Disease: The Experience of the First Attempt at Intracerebral Neurotrophic Factor Therapy

  • Chapter
Neurotrophic Factors

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 134))

Abstract

The understanding of Alzheimer’s disease (AD) pathology has made enormous progress during the past two decades (Kosik 1992; Selkoe 1996; Hardy 1997) Its hallmarks are the formation of neuritic plaques, neurofibrillary tangles and neuron loss in the brain. The discovery of amyloid precursor protein (APP), the genetic analysis of familial forms of AD, and observations on transgenic animals have produced a widely accepted hypothesis which ascribes the central role in the generation of plaques to the APP fragment, A/β. Since A/β is neurotoxic, at least in vitro, the hypothesis includes the view that neuron loss is secondary to the initial nucleation of neuritic plaques caused by Aβ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anton ES, Weskamp G, Reichardt LF, Matthew WD (1994) Nerve growth factor and its low-affinity receptor promote Schwann cell migration. Proc Natl Acad Sei USA 91:2795–2799.

    Article  CAS  Google Scholar 

  • Berninger B, Garcia DE, Inagaki N, Hahnel C, Lindholm D (1993) BDNF and NT-3 induce intracellular Ca2+ elevation in hippocampal neurones. Neuroreport 4:1303–1306.

    Article  PubMed  CAS  Google Scholar 

  • Bowen DM, Smith CB, White P et al. (1976) Neurotransmitter-related enzymes and indices of hypoxia in senile dementia and other abiotrophies. Brain 99:459–496.

    Article  PubMed  CAS  Google Scholar 

  • Bredesen DE (1995) Neural Apoptosis. Ann Neurol 38:839–851.

    Article  PubMed  CAS  Google Scholar 

  • Bredesen DE, Rabizadeh S (1997) p75NTR and apoptosis: Trk-dependent and Trk-independent effects. TINS 20:287–290.

    PubMed  CAS  Google Scholar 

  • Castren E, Pitkanen M, Sirvio J, Parsdanian A, Lindholm D, Thoenen H, Riekkinen PJ (1993) The induction of LTP increases BDNF and NGF mRNA but decreases NT-3 mRNA in the dentate gyrus. Neuroreport 47:895–898.

    Article  Google Scholar 

  • Cellerino A, Maffei L (1996) The action of neurotrophins in the development and plasticity of the visual cortex. Prog Neurobiol 49:53–71.

    PubMed  CAS  Google Scholar 

  • Chen KS, Nishimura MC, Armanini MP, Crowley C, Spencer SD, Phillips HS (1997) Disruption of a single allele of the nerve growth factor gene results in atrophy of basal forebrain cholinergic neurons and memory deficits. J Neuroscience 17:7288–7296.

    CAS  Google Scholar 

  • Clarris HJ, Nurcombe V, Small DH, Beyreuther K, Masters CL (1994) Secretion of nerve growth factor from septum stimulates neurite outgrowth and release of the amyloid protein precursor of Alzheimer’s disease from hippocampal explants. J Neurosci Res 38:248–258.

    Article  PubMed  CAS  Google Scholar 

  • Cohen-Cory S, Fräser SE (1995) Effects of brain-derived neurotrophic factor on optic axon branching and remodelling in vivo. Letters to Nature 378:192–196.

    Article  CAS  Google Scholar 

  • Collazo D, Takahashi H, McKay RD (1992) Cellular targets and trophic functions of neurotrophin-3 in the developing rat hippocampus. Neuron 9:643–656.

    Article  PubMed  CAS  Google Scholar 

  • Croll SD, Wiegand SJ, Anderson KD, Lindsay RM, Nawa H (1994) Regulation of neuropeptides in adult rat forebrain by the neurotrophins BDNF and NGF. Eur J Neurosci 6:1343–1353.

    Article  PubMed  CAS  Google Scholar 

  • Cullen KM, Halliday GM, Double KL, Brooks WS, Creasey H, Broe G A (1997) Cell loss in the nucleus basalis is related to regional cortical atrophy in Alzheimer’s Disease. Neuroscience 78:641–652.

    Article  PubMed  CAS  Google Scholar 

  • Cummings BJ, Yee GJ, Cotman CW (1992) bFGF promotes the survival of entorhinal layer II neurons after perforant path axotomy. Brain Res 591:271–276.

    Article  PubMed  CAS  Google Scholar 

  • Cummings BJ, Su JH, Cotman CW (1993) Neuritic involvement within bFGF immunopositive plaques of Alzheimer’s disease. Exp Neurol 124:315–325.

    Article  PubMed  CAS  Google Scholar 

  • Davies P, Maloney AJF (1976) Selective loss of central cholinergic neurons in Alzheimer’s Disease. Lancet 11:1043.

    Google Scholar 

  • Davis KL, Thal LJ, Gamzu ER, Davis CS, Woolson RF, Gracon SI et al. (1992) A double-blind, placebo-controlled multicenter study of tacrine for Alzheimer’s disease. The Tacrine Collaborative Study Group. N Engl J Med 327:1253–1259.

    CAS  Google Scholar 

  • Dekker AJ, Gage FH, Thai LJ (1992) Delayed treatment with nerve growth factor improves acquisition of a spatial task in rats with lesions of the nucleus basalis magnocellularis: evaluation of the involvement of different neurotransmitter systems. Neuroscience 48:111–119.

    Article  PubMed  CAS  Google Scholar 

  • DeKosky ST, Harbaugh RE, Schmitt FA, Bakay RAE, Chang Chui H, Knopman DS et al. (1992) Cortical biopsy in Alzheimer’s Disease: diagnostic accuracy and neurochemical, neuropathological and cognitive correlations. Ann Neurol 32: 625–632.

    Article  Google Scholar 

  • Eagger SA, Levy R, Sahakian BJ (1991) Tacrine in Alzheimer’s disease. Lancet 337:989–992.

    Article  PubMed  CAS  Google Scholar 

  • Farlow M, Gracon SI, Hershey LA, Lewis KW, Sadowsky CH, Dolan Ureno J (1992) A controlled trial of tacrine in Alzheimer’s disease. The Tacrine Study Group. JAMA 268:2523–2529.

    CAS  Google Scholar 

  • Fischer W, Wictorin K, Bjorklund A, Williams LR, Varon S, Gage FH (1987) Amelioration of cholinergic neuron atrophy and spatial memory impairment in aged rats by nerve growth factor. Nature 329:65–68.

    Article  PubMed  CAS  Google Scholar 

  • Fischer W, Björklund A, Chen K, Gage FH (1991) NGF improves spatial memory in aged rodents as a function of age. J Neurosci 11:1889–1906.

    PubMed  CAS  Google Scholar 

  • Fischer W, Sirevaag A, Wiegand SJ, Lindsay RM, Bjorklund A (1994) Reversal of spatial memory impairments in aged rats by nerve growth factor and neurotrophins 3 and 4/5 but not by brain-derived neurotrophic factor. Proc Natl Acad Sci USA 91:8607–8611.

    Article  PubMed  CAS  Google Scholar 

  • Forloni G, Del Bo R, Angeretti N, Smiroldo S, Gabellini N, Vantini G (1993) Nerve growth factor does not influence the expression of b amyloid precursor protein mRNA in rat brain: in vivo and in vitro studies. Brain Res 620:292–296.

    Article  PubMed  CAS  Google Scholar 

  • Francis PT, Palmer AM, Sims NR et al. (1985) Neurochemical studies of early-onset Alzheimer’s disease: possible influence on treatment. Lancet 4:7–11.

    Google Scholar 

  • Garofalo L, Ribeiro da Silva A, Cuello AC (1992) Nerve growth factor-induced synaptogenesis and hypertrophy of cortical cholinergic terminals. Proc Natl Acad Sci USA. 89:2639–2643.

    Article  PubMed  CAS  Google Scholar 

  • Goedert M, Fine A, Dawbarn D, Wilcock GK, Chao MV (1989) Nerve growth factor receptor mRNA distribution in human brain: normal levels in basal forebrain in Alzheimer’s disease. Brain Res Mol Brain Res 5:1–7.

    Article  PubMed  CAS  Google Scholar 

  • Haroutunian V, Kanof PD, Davis KL (1989) Attenuation of nucleus basalis of Meynert lesion-induced cholinergic deficits by nerve growth factor. Brain Res 487:200–203.

    Article  PubMed  CAS  Google Scholar 

  • Heckers S, Ohtake T, Wiley RG, Lappi DA, Geula C, Mesulam M-M (1994) Complete and selective cholinergic denervation of rat neocortex and hippocampus but not amygdala by an immunotoxin against the p75 NGF receptor. J Neurosci 14:1271–1289.

    PubMed  CAS  Google Scholar 

  • Hefti F (1986) Nerve growth factor promotes survival of septal cholinergic neurons after axonal injury. J Neurosci 6:2155–2162.

    PubMed  CAS  Google Scholar 

  • Hefti F, Mash DC (1989) Localization of nerve growth factor receptors in the normal human brain and in Alzheimer’s disease. Neurobiol Aging 10:75–87.

    Article  PubMed  CAS  Google Scholar 

  • Hefti F, Schneider LS (1989) Rationale for the planned clinical trials with nerve growth factor in Alzheimer’s disease. Psychiatr Dev 7:297–315.

    PubMed  CAS  Google Scholar 

  • Hefti F, Lapchak PA (1993) Pharmacology of nerve growth factor in the brain. Adv in Pharmacol 24:239–273.

    Article  CAS  Google Scholar 

  • Hefti F, Dravid A, Hartikka J (1984) Chronic intraventricular injections of nerve growth factor elevate hippocampal choline acetyltransferase activity in adult rats with partial septo-hippocampal lesions. Brain Res 293:305–311.

    Article  PubMed  CAS  Google Scholar 

  • Hefti F, Hartikka J, Knusel B (1989) Function of neurotrophic factors in the adult and aging brain and their possible use in the treatment of neurodegenerative diseases. Neurobiol Aging 10:515–533.

    Article  PubMed  CAS  Google Scholar 

  • Higgins GA, Mufson EJ (1989) NGF receptor gene expression is decreased in the nucleus basalis in Alzheimer’s disease. Exp Neurol 106:222–236.

    Article  PubMed  CAS  Google Scholar 

  • Holtzman DM, Li Y, Parada LF, Kinsman S, Chen CK, Valletta JS, Zhou J, Long BJ, Mobley WC (1992) pl40trk mRNA marks NGF-responsive forebrain neurons: evidence that trk gene expression is induced by NGF. Neuron 9:465–478.

    Article  PubMed  CAS  Google Scholar 

  • Ip NY, Li Y, Yancopoulos GD, Lindsay RM (1993) Cultured hippocampal neurons show responses to BDNF, NT-3 and NT-4, but not NGF. J Neurosci 13:3394–3405.

    PubMed  CAS  Google Scholar 

  • Isaacson LG, Saffran BN, Crutcher KA (1990) Intracerebral NGF infusion induces hyperinnervation of cerebral blood vessels. Neurobiol Aging 11:51–55.

    Article  PubMed  CAS  Google Scholar 

  • Kohmura E, Yuguchi T, Yamada K, Sakaguchi K, Hayakawa T (1994) Recombinant basic fibroblast growth factor spares thalamic neurons from retrograde degeneration after ablation of the somatosensory cortex in rats. Restorative Neurol Neurosci 6:309–316.

    CAS  Google Scholar 

  • Koliatsos VE, Clatterbuck RE, Nauta HJ, Knusel B, Burton LE, Hefti FF et al. (1991) Human nerve growth factor prevents degeneration of basal forebrain cholinergic neurons in primates. Ann Neurol 30:831–840.

    Article  PubMed  CAS  Google Scholar 

  • Kordower JH, Bartus RT, Bothwell M et al. (1988) Nerve growth factor immunoreac- tivity in the non-human primate (Cebus apella): distribution, morphology, and colocalization with cholinergic enzymes. J Comp Neurol 277:465–486.

    Article  PubMed  CAS  Google Scholar 

  • Kordower JH, Winn SR, Liu Y-T, Mufson EJ, Sladek JR, Hammang JP, Baetge EE, Emerich DF (1994) The aged monkey basal forebrain: rescue and sprouting of axotomized basal forebrain neurons after grafts of encapsulated cells secreting human nerve growth factor. Proc Natl Acad Sei USA 91:10898–10902.

    Article  CAS  Google Scholar 

  • Korte M, Carroll P, Wolf E, Brem G, Thoenen H, Bonhoeffer T (1995) Hippocampal long-term potentiation is impaired in mice lacking brain-derived neurotrophic factor. Proc Natl Acad Sei USA 92:8856–8860.

    Article  CAS  Google Scholar 

  • Kosik KS (1992) Alzheimer’s disease: a cell biological perspective. Science 256:780–783.

    Article  PubMed  CAS  Google Scholar 

  • Krewson CE, Klarman ML, Saltzman WM (1995) Distribution of nerve growth factor following direct delivery to brain interstitium. Brain Res 680:196–206.

    Article  PubMed  CAS  Google Scholar 

  • Kuhl DE, Minoshima S, Fessler JA, Frey KA, Foster NL, Ficaro EP, Wieland DM, Koeppe RA (1996) In vivo mapping of cholinergic terminals in normal aging, Alzheimer’s Disease, and Parkinson’s Disease. Ann Neurol 40:399–410.

    Article  PubMed  CAS  Google Scholar 

  • Lahiri DJ, Nail C (1995) Promoter activity of the gene encoding the beta-amyloid precursor protein is up-regulated by growth factors, phorbol ester, retinoic acid and interleukin-1. Molecular Brain Res 32:233–240.

    Article  CAS  Google Scholar 

  • Lapchak P A, Hefti F (1991) Effect of recombinant human nerve growth factor on presynaptic cholinergic function in rat hippocampal slices following partial septo- hippocampal lesions: measures of ACh synthesis, ACh release and choline acetyltransferase activity. Neuroscience 42:639–649.

    Article  PubMed  CAS  Google Scholar 

  • Lapchak PA, Araujo DM, Carswell S, Hefti F (1993) Distribution of [125I]nerve growth factor in the rat brain following an intraventricular injection: sequestration by trkA mRNA expressing septal neurons. Neuroscience 54:445–460.

    Article  PubMed  CAS  Google Scholar 

  • Leanza G, Nilsson OG, Wiley RG, Björklund A (1995) Selective lesioning of the basal forebrain cholinergic system by intraventricular 192 IgG-saporin: behavioural, biochemical and stereological studies in the rat. Eur J Neurosci 7:329–343.

    Article  PubMed  CAS  Google Scholar 

  • Lehericy S, Hirsch EC, Cervera Pierot P, Hersh LB, Bakchine S, Piette F et al. (1993) Heterogeneity and selectivity of the degeneration of cholinergic neurons in the basal forebrain of patients with Alzheimer’s disease. J Comp Neurol 330:15–31.

    Article  PubMed  CAS  Google Scholar 

  • Levi-Montalcini R, Skaper SD, Dal Toso R, Petrelli L, Leon A (1996) Nerve growth factor: from neurotrophin to neurokine. TINS 19:514–520

    PubMed  CAS  Google Scholar 

  • Loy R, Heyder D, Clagett-Dame M et al. (1990) Localization of NGF receptors in normal and Alzheimer’s basal forebrain with monoclonal antibodies against the truncated form of the receptor. J Neurosci Res 27:651–664.

    Article  PubMed  CAS  Google Scholar 

  • Markowska AL, Koliatsos VE, Breckler SJ, Price DL, Olton DS (1994) Human nerve growth factor improves spatial memory in aged but not in young rats. J Neurosci 14:4815–4824.

    PubMed  CAS  Google Scholar 

  • Markowska AL, Price DL, Koliatsos VE (1996) Selective effects of nerve growth factor on spatial recent memory as assessed by a delayed nonmatching-to-position task in the water maze. J Neurosci 16:3541–3548.

    PubMed  CAS  Google Scholar 

  • Martinez-Serrano A, Fischer W, Söderström S, Ebendal T, Björklund A (1996) Long- term functional recovery from age-induced spatial memory impairments by nerve growth factor gene transfer to the rat basal forebrain. Proc Natl Acad Sei USA 93: 6355–6360.

    Article  CAS  Google Scholar 

  • Miyamoto M, Narumi S, Nagaoka A, Coyle JT (1989) Effects of continuous infusion of cholinergic drugs on memory impairment in rats with basal forebrain lesions. J Pharm Exp Ther 248:825–835.

    CAS  Google Scholar 

  • Mobley WC, Neve RL, Prusiner SB, McKinley MP (1988) Nerve growth factor increases mRNA levels for the prion protein and the beta-amyloid protein precursor in developing hamster brain. Proc Natl Acad Sei USA 85:9811–9815.

    Article  CAS  Google Scholar 

  • Mufson EJ, Lavine N, Jaffar S, Kordower JH, Quirion R, Saragovi HU (1997) Reduction in pl40-TrkA receptor protein within the nucleus basalis and cortex in Alzheimer’s disease. Exp Neurol 146:91–103.

    Article  PubMed  CAS  Google Scholar 

  • Mufson EJ,Corner JM, Kordower JH (1995) Nerve growth factor in Alzheimer′S disease: defective retrograde transport to nucleus basalis. Neuroreport trnsport 6:1063–1066

    Article  CAS  Google Scholar 

  • Murray KD, Gall CM, Jones EG, Isackson PJ (1994) Differential regulation of brain- derived neurotrophic factor and type II calcium/calmodulin-dependent protein kinase messenger RNA expression in Alzheimer’s disease. Neuroscience 60:37–48.

    Article  PubMed  CAS  Google Scholar 

  • Nakagawara A, Arima Nakagawara M, Skavarda NJ, Azar CG, Cantor AB, Brodeur GM (1993) Association between high levels of expression of the TRK gene and favorable outcome in human neuroblastoma. N Engl J Med 328:847–854.

    Article  PubMed  CAS  Google Scholar 

  • Narisawa SM, Wakabayashi K, Tsuji S, Takahashi H, Nawa H (1996) Regional specificity of alterations in NGF, BDNF and NT-3 levels in Alzheimer’s disease. Neuroreport 7:2925–2928.

    Article  Google Scholar 

  • Ohyagi Y, Tabira T (1993) Effect of growth factors and cytokines on expression of amyloid beta protein precursor mRNAs in cultured neural cells. Brain Res Mol Brain Res 18:127–132.

    Article  PubMed  CAS  Google Scholar 

  • Olson L, Nordberg A, von Holst H, Backman L, Ebendal T, Alafuzoff I et al. (1992) Nerve growth factor affects 11C-nicotine binding, blood flow, EEG, and verbal episodic memory in an Alzheimer patient (case report). J Neural Transm Parkinson’s Dis Dementia Sect 4:79–95.

    Article  CAS  Google Scholar 

  • Phillips HS, Hains JN, Laramee GR et al. (1990) Widespread expression of BDNF but not NT3 by target areas of basal forebrain cholinergic neurons. Science 250:290–292.

    Article  PubMed  CAS  Google Scholar 

  • Phillips HS, Hains JM, Armanini M, Laramee GR, Johnson SA, Winslow JW (1991) BDNF mRNA is decreased in the hippocampus of individuals with Alzheimer’s disease. Neuron 7:695–702.

    Article  PubMed  CAS  Google Scholar 

  • Pincelli C, Sevignani C, Manfredini R, Grande A, Fantini F, Bracci-Laudiero L et al. (1994) Expression and function of nerve growth factor and nerve growth factor receptor on cultured keratinocytes. J Invest Dermatol 103:13–18.

    Article  PubMed  CAS  Google Scholar 

  • Price D (1986) New perspectives on Alzheimer’s disease. Ann Rev Neurosci 9:489–512.

    Article  PubMed  CAS  Google Scholar 

  • Ramón Y, Cajal S (1928) Degeneration and regeneration of the nervous system. Hafner Publishing Company, London.

    Google Scholar 

  • Salehi A, Verhaagen J, Dijkhuizen PA, Swaab DF (1996) Co-localization of high- affinity neurotrophin receptors in nucleus basalis of Meynert neurons and their differential reduction in Alzheimer’s disease. Neuroscience 75:373–387.

    Article  PubMed  CAS  Google Scholar 

  • Scott SA, Mufson EJ, Weingartner JA, Skau KA, Crutcher KA (1995) Nerve growth factor in Alzheimer’s disease: increased levels throughout the brain coupled with declines in nucleus basalis. J Neuroscience 15:6213–6221.

    CAS  Google Scholar 

  • Seiger Å, Nordberg A, von Holst H, Bäckman L, Ebendal T, Alafuzoff I et al. (1993) Intracranial infusion of purified nerve growth factor to an Alzheimer patient: the first attempt of a possible future treatment strategy. Behav Brain Res 57:255–261.

    Article  PubMed  CAS  Google Scholar 

  • Smeyney RJ, Klein R, Schnapp A, Long LK, Bryant S, Lewin A, Lira SA, Barbacid M (1994) Severe sensory and sympathetic neuropathies in mice carrying a disrupted Trk/NGF receptor gene. Nature 368:246–249.

    Article  Google Scholar 

  • Snider WD (1994) Functions of the neurotrophins during nervous system development: what the knockouts are teaching us. Cell 77:627–638.

    Article  PubMed  Google Scholar 

  • Steckler T, Keith AB, Wiley RG, Sahgal A (1995) Cholinergic lesions by 192 IgG- saporin and short-term recognition memory: role of the septohippocampal projection. Neuroscience 66:101–114.

    Article  PubMed  CAS  Google Scholar 

  • Thoenen H(1995) Neurotrophins and neuronal plasticity. Science 270:593–598.

    Article  PubMed  CAS  Google Scholar 

  • Thoenen H, Bandtlow C, Heumann R (1987) The physiological function of nerve growth factor in the central nervous system: comparison with the periphery. Rev Physiol Biochem Pharmacol 109:145–178.

    Article  PubMed  CAS  Google Scholar 

  • Tilson HA, McLamb RL, Shaw S, Rogers BC, Pediaditakis P, Cook L (1988) Radial- arm maze deficits produced by colchicine administered into the area of the nucleus basalis are ameliorated by cholinergic agents. Brain Res 438:83–94.

    Article  PubMed  CAS  Google Scholar 

  • Treanor JJS, Dawbarn D, Allen SJ et al. (1991) Low affinity nerve growth factor receptor binding in normal and Alzheimer’s disease basal forebrain. Neurosci Lett 121:73–76.

    Article  PubMed  CAS  Google Scholar 

  • Tuszynski MH, Sang H, Yoshida K, Gage FH (1991) Recombinant human nerve growth factor infusions prevent cholinergic neuronal degeneration in the adult primate brain. Ann Neurol 30:625–636.

    Article  PubMed  CAS  Google Scholar 

  • Vanderzee CEEM, Ross GM, Riopelle RJ, Hagg T (1996) Survival of cholinergic forebrain neurons in developing p75(NGFR)-deficient mice. Science 274:1729–1732.

    Article  CAS  Google Scholar 

  • Vazquez ME, Ebendal T (1991) Messenger RNAs for trk and the low-affinity NGF receptor in rat basal forebrain. Neuroreport 2:593–596.

    Article  PubMed  CAS  Google Scholar 

  • Venero JL, Hefti F, Beck KD (1995) Retrograde transport of nerve growth factor from hippocampus and amygdala to trk A mRNA expressing neurons in paraventricular and reuniens nuclei of the thalamus. Neuroscience 64:855–860.

    Article  PubMed  CAS  Google Scholar 

  • Venero JL, Hefti F, Knusel B (1996) Trophic effect of exogenous nerve growth factor on rat striatal cholinergic neurons: comparison between intraparenchymal and intraventricular administration. Mol Pharmacol 49:303–310.

    PubMed  CAS  Google Scholar 

  • Vito P, Lacana E, D’Adamio L (1996) Interfering with apoptosis: Ca2+ binding protein ALG-2 and Alzheimer’s disease gene ALG-3. Science 271:521–525.

    Article  PubMed  CAS  Google Scholar 

  • Voytko ML, Olton DS, Richardson RT, Gorman LK, Tobin JR, Price DL (1994) Basal forebrain lesions in monkeys disrupt attention but not learning and memory. J Neurosci 14:167–186.

    PubMed  CAS  Google Scholar 

  • Wenk GL, Stoehr JD, Quintana G, Mobley S, Wiley R G (1994) Behavioral, biochemical, histological and electrophysiological effects of 192 IgG-saporin injections into the basal forebrain of rats. J Neuroscience 14:5986–5995.

    CAS  Google Scholar 

  • Whitehouse PJ, Price DL, Struble RG et al. (1982) Alzheimer’s disease and senile dementia; loss of neurons in the basal forebrain. Science 215:1237–1239.

    Article  PubMed  CAS  Google Scholar 

  • Widmer HR, Kaplan DR, Rabin SJ, Beck KD, Hefti F, Knusel B (1993) Rapid phosphorylation of phospholipase C gamma3 by brain-derived neurotrophic factor and neurotrophin-3 in cultures of embryonic rat cortical neurons. J Neurochem 60:2111–2123.

    Article  PubMed  CAS  Google Scholar 

  • Will B, Hefti F (1985) Behavioural and neurochemical effects of chronic intraventricular injections of nerve growth factor in adult rats with fimbria lesions. Behav Brain Res 17:17–24.

    Article  PubMed  CAS  Google Scholar 

  • Williams LR, Varon S, Peterson GM, Wictorin K, Fischer W, Bjorklund A, Gage FH (1986) Continuous infusion of nerve growth factor prevents basal forebrain neuronal death after fimbria fornix transection. Proc Natl Acad Sci USA 83:9231–9235.

    Article  PubMed  CAS  Google Scholar 

  • Winkler J, Ramirez GA, Kuhn HG, Peterson DA, Day-Lollini PA, Steward GR, Tuszynski MH, Gage FH, Thai LJ (1997) Reversible Schwann cell hyperplasia and sprouting of sensory and sympathetic neurites after intraventricular administration of nerve growth factor. Ann Neurol 41:82–93.

    Article  PubMed  CAS  Google Scholar 

  • Yaar M, Eller MS, DiBenedetto P, Reenstra WR, Zhai S, McQuaid T et al. (1994) The trk family of receptors mediates nerve growth factor and neurotrophin-3 effects in melanocytes. J Clin Invest 94:1550–1562.

    Article  PubMed  CAS  Google Scholar 

  • Yamatsuji T, Okamoto T, Takeda S, Murayama Y, Tanaka N, Nishimoto I (1996) Expression of V642 APP mutant causes cellular apoptosis as Alzheimer trait- linked phenotype. EMBO J 15:498–509.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hefti, F. (1999). Nerve Growth Factor Treatment for Alzheimer’s Disease: The Experience of the First Attempt at Intracerebral Neurotrophic Factor Therapy. In: Hefti, F. (eds) Neurotrophic Factors. Handbook of Experimental Pharmacology, vol 134. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59920-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59920-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64182-4

  • Online ISBN: 978-3-642-59920-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics