Skip to main content

Microfluorometry of Cellular and Subcellular Processing in CNS Cells

  • Chapter
Applied Fluorescence in Chemistry, Biology and Medicine
  • 443 Accesses

Abstract

Understanding the behavior of biological cells is a primary target in biomedical research aimed at the development of new therapeutic strategies against a variety of diseases. It has become clear with traditional biochemical and physiological methods that the processing and storage of information, i. e. the behavior of biological cells, can be explained only by models hypothesizing a highly organized subcellular organization of molecular signaling. In order to understand this complex cellular organization correctly, it is of great importance to study it in a state as undisturbed as possible. Fluorescence techniques have turned out to be invaluable tools in these studies because of minimal external interference together with a high temporal and spatial resolution that has allowed the study of many important subcellular signaling events. It has been demonstrated, particularly in nervous system cells, that the performance of information processing and storage relies heavily on functional cellular compartmentation. Individual cortical pyramidal neurons communicate through an estimated 10000 to 30000 synaptic connections on their dendrites respective axon collateral terminals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al-Mohanna FA, Caddy KW, Bolsover SR (1994) The nucleus is insulated from large cytosolic calcium ion changes. Nature 367:745–750.

    Article  CAS  Google Scholar 

  • Almers W, Neher E (1985) The Ca signal from fura-2 loaded mast cells depends strongly on the method of dye-loading. Febs Lett 192:13–18.

    Article  CAS  Google Scholar 

  • Behl C, Davis JB, Lesley R, Schubert D (1994) Hydrogen peroxide mediates amyloid beta protein toxicity. Cell 77:817–827.

    Article  CAS  Google Scholar 

  • Bright GR, Fisher GW, Rogowska J, Taylor DL (1987) Fluorescence ratio imaging microscopy: temporal and spatial measurements of cytoplasmic pH. J Cell Biol 104:1019–1033.

    Article  CAS  Google Scholar 

  • Brune T, Deitmer JW (1995) Intracellular acidification and Ca2+ transients in cultured rat cerebellar astrocytes evoked by glutamate agonists and noradrenaline. Glia 14:153–161.

    Article  CAS  Google Scholar 

  • Connor JA (1993) Intracellular calcium mobilization by inositol 1,4,5-trisphosphate: intracellular movements and compartmentalization. Cell Calcium 14:185–200.

    Article  CAS  Google Scholar 

  • Denk W (1994) Two-photon scanning photochemical microscopy: mapping ligand-gated ion channel distributions. Proc Natl Acad Sci USA 91:6629–6633.

    Article  CAS  Google Scholar 

  • Denk W (1977) Pulsing mercury arc lamps for uncaging and fast imaging. J Neurosci Methods 72:39–42.

    Article  Google Scholar 

  • Denk W, Piston DW, Webb W (1995) Two-photon molecular excitation in laser-scanning microscopy. Handbook of biological confocal microoscopy. New York, Plenum Press 2, ed 445–458.

    Google Scholar 

  • Denk W, Sugimori M, Llinas R (1995) Two types of calcium response limited to single spines in cerebellar Purkinje cells. Proc Natl Acad Sci USA 92:8279–8282.

    Article  CAS  Google Scholar 

  • Dumuis A, Pin JP, Oomagari K, Sebben M, Bockaert J (1990) Arachidonic acid released from striatal neurons by joint stimulation of ionotropic and metabotropic quisqualate receptors. Nature 347:182–184.

    Article  CAS  Google Scholar 

  • Dumuis A, Sebben M, Haynes L, Pin JP, Bockaert J (1988) NMDA receptors activate the arachidonic acid cascade system in striatal neurons. Nature 336:68–70.

    Article  CAS  Google Scholar 

  • Egorov A, Müller W (1997) Muscarinic potentiation on stimulation-induced calcium increases in dendrites and spines of CA1 pyramidal neurons in rat hippocampal slice. Pflüger’s Arch 433: R 71.

    Google Scholar 

  • Eilers J, Augustine GJ, Konnerth A (1995) Subthreshold synaptic Ca2+ signalling in fine dendrites and spines of cerebellar Purkinje neurons. Nature 373:155–158.

    Article  CAS  Google Scholar 

  • Eilers J, Callewaert G, Armstrong C, Konnerth A (1995) Calcium signaling in a narrow somatic submembrane shell during synaptic activity in cerebellar Purkinje neurons. Proc Natl Acad Sci USA 92:10272–10276.

    Article  CAS  Google Scholar 

  • Erdmann S, Müller W, Bahrami S, Vornehm SI, Mayer H, Bruckner P, von der Mark K, Burkhardt H (1996) Differential effects of parathyroid hormone fragments on collagen gene expression in chondrocytes. J Cell Biol 35:1179–1191.

    Article  Google Scholar 

  • Fay FS, Carrington W, Fogarty KE (1989) Three-dimensional molecular distribution in single cells analyzed using the digital imaging microscope. J Microsc 153:133–149.

    Article  CAS  Google Scholar 

  • Grinstein S, Woodside M, Waddell TK, Downey GP, Orlowski J, Pouyssegur J, Wong DC, Foskett JK (1993) Focal localization of the NHE-1 isoform of the Na+/H+ antiport: assessment of effects on intracellular pH. Embo J 12:5209–5218.

    CAS  Google Scholar 

  • Hoth M, Fanger CM, Lewis RS (1997) Mitochondrial regulation of store-operated calcium signaling in T lymphocytes. J Cell Biol 137:633–648.

    Article  CAS  Google Scholar 

  • Isenberg G, Etter EF, Wendt GM, Schiefer A, Carrington WA, Tuft RA, Fay FS (1996) Intrasarcomere [Ca2+] gradients in ventricular myocytes revealed by high speed digital imaging microscopy, Proc Natl Acad Sci USA 93:5413–5418.

    Article  CAS  Google Scholar 

  • Kim JH, Lingwood CA, Williams DB, Furuya W, Manolson MF, Grinstein S (1996) Dynamic measurement of the pH of the Golgi complex in living cells using retrograde transport of the verotoxin receptor. J Cell Biol 134:1387–1399.

    Article  CAS  Google Scholar 

  • Lang T, Wacker I, Steyer J, Kaether C, Wunderlich I, Soldati T, Gerdes HH, Aimers W (1997) Ca2+-triggered peptide secretion in single cells imaged with green fluorescent protein and evanescent-wave microscopy. Neuron 18:857–863.

    Article  CAS  Google Scholar 

  • Llinas R, Sugimori M, Silver, RB (1992) Microdomains of high calcium concentration in a presynaptic terminal. Science 256:677–679.

    Article  CAS  Google Scholar 

  • Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, Ikura M, Tsien RY (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388:882–887.

    Article  CAS  Google Scholar 

  • Müller TH, Naraghi M, Neher E (1995) Calcium gradients observed in chromaffin cells under conditions of low dye-dependent mobility. Pflüger’s Arch 429:R24.

    Google Scholar 

  • Müller W, Connor JA (1991) Dendritic spines as individual neuronal compartments for synaptic Ca2+ responses Nature 354:73–76.

    Article  Google Scholar 

  • Müller W, Connor JA (1992) Ca2+ signalling in postsynaptic dendrites and spines of mammalian neurons in brain slice. J Physiol Paris 86:57–66.

    Article  Google Scholar 

  • Müller W, Connor JA (1993) High resolution microfluorometry of Ca2+ signalling in dendrites and spines of central neurons. Jpn J Physiol 43:S 131–137.

    Google Scholar 

  • Müller W, Heinemann U, Schuchmann S (1997) Impaired Ca-signaling in astrocytes from the Tsl6 mouse model of Down’s syndrome. Neurosci Lett 223:81–84.

    Article  Google Scholar 

  • Müller W, Swandulla D (1995) Synaptic feedback excitation has hypothalamic neural networks generate quasirhythmic burst activity. J Neurophysiol 73:855–861.

    Google Scholar 

  • Neher E (1995) The use of Fura-2 for estimating Ca buffers and Ca fluxes. Neuropharmacology 34:1423–1442.

    Article  CAS  Google Scholar 

  • Overly CC, Lee KD, Berthiaume E, Hollenbeck PJ (1995) Quantitative measurement of intra- organelle pH in the endosomal- lysosomal pathway in neurons by using ratiometric imaging with pyranine. Proc Natl Acad Sci USA 92:3156–3160.

    Article  CAS  Google Scholar 

  • Petrozzino JJ, Pozzo Miller L, Connor JA (1995) Micromolar Ca2+ transients in dendritic spines of hippocampal pyramidal neurons in brain slice. Neuron 14:1223–1231.

    Article  CAS  Google Scholar 

  • Poenie M (1990) Alteration of intracellular Fura-2 fluorescence by viscosity: a simple correction. Cell Calcium 11:85–91.

    Article  CAS  Google Scholar 

  • Pozzan T, Rizzuto R, Volpe P, Meldolesi J (1994) Molecular and cellular physiology of intracellular calcium stores. Physiol Rev 74:595–636.

    Article  CAS  Google Scholar 

  • Regehr WG, Tank DW (1990) Postsynaptic NMDA receptor-mediated calcium accumulation in hippocampal CA1 pyramidal cell dendrites. Nature 345:807–810.

    Article  CAS  Google Scholar 

  • Stehno BL, Perez TC, Clapham DE (1995) Diffusion across the nuclear envelope inhibited by depletion of the nuclear Ca2+ store. Science 270:1835–1838.

    Article  Google Scholar 

  • Steyer JA, Horstmann H, Aimers W (1997) Transport, docking and exocytosis of single secretory granules in live chromaffin cells. Nature 388:474–478.

    Article  CAS  Google Scholar 

  • Svoboda K, Denk W, Kleinfeld D, Tank DW (1997) In vivo dendritic calcium dynamics in neo-cortical pyramidal neurons. Nature 385:161–165.

    Article  CAS  Google Scholar 

  • Yuste R, Denk W (1995) Dendritic spines as basic functional units of neuronal integration. Nature 375:682–684.

    Article  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Müller, W., Schuchmann, S., Egorov, A.V., Gloveli, T., Bittner, K. (1999). Microfluorometry of Cellular and Subcellular Processing in CNS Cells. In: Applied Fluorescence in Chemistry, Biology and Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59903-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59903-3_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64175-6

  • Online ISBN: 978-3-642-59903-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics