Skip to main content

Luminescent Lanthanide Chelates for Improved Resonance Energy Transfer and Application to Biology

  • Chapter
Applied Fluorescence in Chemistry, Biology and Medicine

Abstract

Fluorescence resonance energy transfer (FRET) is a technique widely used to measure the distance between two points which are separated by approximately 10–80 Å. Lanthanide-based RET (LRET) is a recent modification of the technique with a number of technical advantages, yet relies on the same fundamental mechanism — subject to careful interpretation of various terms. A number of excellent reviews on FRET have been written [14, 21–28]. A recent review of LRET has also appeared [9], as well as a summary of lanthanide luminescence [29] and its application to bio-assays [30], so here we provide only a brief summary of the relevant theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yu, H., E.P. Diamandis. (1993) Ultrasensitive time-resolved immunofluorometric assay of prostate-specific antigen in serum and preliminary clinical studies. Clin. Chem. 39: 2108–2114.

    CAS  Google Scholar 

  2. Oser, A., W.K. Roth, G. Valet. (1988) Sensitive non-radioactive dot-blot hybridization using DNA probes labelled with chelate group substituted psoralen and quantitative detection by europium ion fluorescence. Nucleic Acids Res. 16:1181–1196.

    Article  CAS  Google Scholar 

  3. Oser, A., M. Collasius, G. Valet. (1990) Multiple End Labeling of Oligonucleotides with Terbium Chelate-Substituted Psoralen for Time-Resolved Fluorescence Detection. Anal. Biochem. 191:295–301.

    Article  CAS  Google Scholar 

  4. Saha, A.K., K. Kross, E.D. Kloszewski, D.A. Upson, J.L. Toner, R.A. Snow, C.D.V. Black, V.C. Desai. (1993) Time-Resolved Fluorescence of a New Europium Chelate Complex: Demonstration of Highly Sensitive Detection of Protein and DNA Samples. J. Am. Chem. Soc. 115:11032.

    Article  CAS  Google Scholar 

  5. Hemmilä, I., S. Dakubu, V.-M. Mukkala, H. Siitari, T. Lovgren. (1984) Europium as a label in time-resolved immunofluorometric assays. Anal. Biochem. 137:335–343.

    Article  Google Scholar 

  6. Seveus, L., M. Vaisala, I. Hemmila, H. Kojola, G.M. Roomans, E. Soini. (1994) Use of Fluorescent Europium Chelates as Labels in Microscopy Allows Glutaraldehyde Fixation and Permanent Mounting and Leads to Reduced Autofluorescence and Good Long-Term Stability. Microscopy Res. and Technique 28:149–154.

    Article  CAS  Google Scholar 

  7. Marriott, G., M. Heidecker, E.P. Diamandis, Y. Yan-Marriott. (1994) Time-Resolved Delayed Luminescence Image Microscopy Using an Europium Ion Chelate Complex. Biophys. J. 67:957–965.

    Article  CAS  Google Scholar 

  8. Stryer, L., D.D. Thomas, C.F. Meares. 1982. Diffusion-Enhanced Fluorescence Energy Transfer, In Ann. Rev. of Biophys. Bioeng., ed. L. J. Mullins, pp. 203–222. Palo Alto, CA: Annual Reviews, Inc.

    Google Scholar 

  9. Selvin, P.R. (1996) Lanthanide-based resonance energy transfer. IEEE J. of Selected Topics in Quantum Electronics: Lasers in Biology 2:1077–1087.

    Article  CAS  Google Scholar 

  10. Mathis, G. (1995) Probing molecular interactions with homogeneous techniques based on rare earth cryptates and fluorescence energy transfer. Clin. Chem. 41:1391–1397.

    CAS  Google Scholar 

  11. Mathis, G. (1993) Rare Earth Cryptates and Homogeneous Fluoroimmunoassays with Human Sera. Clin. Chem. 39:1953–1959.

    CAS  Google Scholar 

  12. Selvin, P.R., T.M. Rana, J.E. Hearst. (1994) Luminescence resonance energy transfer. J. Am. Chem. Soc. 116:6029–6030.

    Article  CAS  Google Scholar 

  13. Selvin, P.R., J.E. Hearst. (1994) Luminescence energy transfer using a terbium chelate: Improvements on fluorescence energy transfer. Proc. Natl. Acad. Sci, USA 91:10024–10028.

    Article  CAS  Google Scholar 

  14. Selvin, P.R. 1995. Fluorescence Resonance Energy Transfer, In Methods in Enzymology, ed. K. Sauer, pp. 300–334. Orlando: Academic Press.

    Google Scholar 

  15. Heyduk, E., T. Heyduk. (1997) Thiol-reactive luminescent Europium chelates: luminescence probes for resonance energy transfer distance measurements in biomolecules. Anal. Biochem. 248:216–227.

    Article  CAS  Google Scholar 

  16. Heyduk, E., T. Heyduk, P. Claus, J.R. Wisniewski. (1997) Conformational Changes of DNA Induced by Binding of Chironomus High Mobility Group Protein la (cHMGla). J. Biol. Chem. 272:19763–19770.

    Article  CAS  Google Scholar 

  17. Root, D.D. (1997) In Situ molecular association of dystrophin with actin revealed by sensitized emission immuno-resonance energy transfer. Proc. Natl. Acad. Sci., USA 94.

    Google Scholar 

  18. Li, M., P.R. Selvin. (1995) Luminescent lanthanide polyaminocarboxylate chelates: the effect of chelate structure. J. Am. Chem. Soc. 117:8132–8138.

    Article  CAS  Google Scholar 

  19. Getz, E.B., R. Cooke, P.R. Selvin. (in press) Luminescence Resonance Energy Transfer Measurements on Myosin. Biophys. J.

    Google Scholar 

  20. Xiao, M., H. Li, E.B. Getz, R. Cooke, R.G. Yount, P.R. Selvin. 1998. Luminescence Resonance Energy Transfer Measurements from the Active Site of Myosin. Presented at the Biophysical Society, Kansas City, MO 1998.

    Google Scholar 

  21. Stryer, L. (1978) Fluorescence Energy Transfer as a Spectroscopic Ruler. Ann. Rev. Biochem. 47:819–846.

    Article  CAS  Google Scholar 

  22. Fairclough, R., H., C. Cantor, R. 1978. The use of Singlet - Singlet Energy Transfer to Study Macromolecular Assemblies, In Methods in Enzymology, ed., pp. 347–379.

    Google Scholar 

  23. Cantor, C.R., P.R. Schimmel. 1980. Biophysical Chemistry. San Francisco: W. H. Freeman and Co.

    Google Scholar 

  24. Herman, B. (1989) Resonance Energy Transfer Microscopy. Meth. Cell Bio. 30:219–243.

    Article  CAS  Google Scholar 

  25. Coker, G., III, S.Y. Chen, B.W. van der Meer. 1994. Resonance Energy Transfer: VCH Publishers, Inc.

    Google Scholar 

  26. Clegg, R.M. (1995) Fluorescence Resonance Energy Transfer. Curr. Op. Biotech. 6: 103–110.

    Article  CAS  Google Scholar 

  27. Clegg, R.M. 1996. Fluorescence Resonance Energy Transfer, In Fluorescence Imaging Spectroscopy and Microscopy, ed. X. F. Wang, B. Herman, pp. 179–251: John Wiley & Sons, Inc.

    Google Scholar 

  28. dos Remedios, C.G., P.D.J. Moens. 1998. Fluorescence resonance energy transfer - applications in protein chemistry, In Resonance Energy Transfer, ed. D. L. Andrews, A. A. Demidov. Chichester: John Wiley and Sons.

    Google Scholar 

  29. Bunzli, J.-C.G. 1989. Luminescent Probes, In Lanthanide Probes in Life, Chemical and Earth Sciences, Theory and Practice, ed. J.-C. G. Bunzli, G. R. Choppin, pp. 219–293. New York: Elsevier.

    Google Scholar 

  30. Sammes, P.G., G. Yahioglu. (1996) Modern Bioassays using Metal Chelates as Luminescent Probes. Modern Bioassays using Metal Chelates as Luminescent Probes 13:1–28.

    CAS  Google Scholar 

  31. Bastiaens, P.I.H., T.M. Jovin. 1998. Fluorescence Resonance Energy Transfer (FRET) Microscopy, In Cell Biology: A Laboratory Handbook, ed. J. E. Celis, pp. 136–146. New York: Academic Press.

    Google Scholar 

  32. Drexhage, K.H. (1970) Monomolecular Layers and Light. Sci. Amer. 222:108–119.

    Article  CAS  Google Scholar 

  33. Dexter, D.L. (1953) A Theory of Sensitized Luminescence in Solids. J. Chem. Phys. 21: 836–850.

    Article  CAS  Google Scholar 

  34. Horrocks, W.D., Jr., D.R. Sudnick. (1979) Lanthanide Ion Probes of Structure in Biology. Laser-Induced Luminescence Decay Constants Provide a Direct Measure of the Number of Metal-Coordinated Water Molecules. J. Am. Chem. Soc. 101:334–350.

    CAS  Google Scholar 

  35. Li, M., P.R. Selvin. (1997) Amine-reactive forms of a luminescent DTPA chelate of terbium and europium: Attachment to DNA and Energy Transfer Measurements. Bioconjugate Chem. 8:127–132.

    Article  CAS  Google Scholar 

  36. Takalo, H., V.-M. Mukkala, H. Mikola, P. Liitti, I. Hemmila. (1994) Synthesis of Europium(III) Chelates Suitable for Labeling of Bioactive Molecules. Bioconjugate Chem. 5:278–282.

    Article  CAS  Google Scholar 

  37. Selvin, P.R., J. Chen. (1998) Thiol-reactive luminescent lanthanide chelates, manuscript in preparation.

    Google Scholar 

  38. Li, H., J. Grammer, R. Cooke, P.R. Selvin, R.G. Yount. (1998) Synthesis and Spectral Characterization of a Photoaffinity ATP Analog Containing a Luminescent Lanthanide Chelate, manuscript in preparation.

    Google Scholar 

  39. >Vereb, G., E. Jares-Erijman, P.R. Selvin, T.M. Jovin. (submitted) Time and spectrally re-solved imaging microscopy of lanthanide chelates. Biophys. J.

    Google Scholar 

  40. Stryer, L. 1995. Biochemistry. San Francisco: W.H. Freeman.

    Google Scholar 

  41. Baker, J.E., I. Brust-Mascher, S. Ramachandran, L.E.W. LaConte, D.D. Thomas, (in press) A Large and Distinct Rotation Of The Myosin Light Chain Domain Upon Muscle Contraction. Proc. Nat. Acad. Sci. USA.

    Google Scholar 

  42. Irving, M., T.S. Allen, C. Sabido-David, J.S. Craik, B. Brandmeier, J. Kendrickjones, J.E.T. Corrie, D.R. Trentham, Y.E. Goldman. (1995) Tilting of the light-chain region of myosin during step length changes and active force generation in skeletal muscle. Nature 375: 688–691.

    Article  CAS  Google Scholar 

  43. Smyzynski, C., A. A. Kasprzak. (1997) Effect of nucleotides and actin on the orientation of the light chain-bindig domain in myosin subfragment 1. Biochemistry 36:13201–13207.

    Article  Google Scholar 

  44. Rayment, I., W.R. Rypniewski, K. Schmidt-Base, R. Smith, D.R. Tomchick, M.M. Benning, D.A. Winkelmann, G. Wesenberg, H.M. Holden. (1993 A) Three-dimensional structure of myosin subfragment-1: A molecular motor. Science 261:50–57.

    Article  CAS  Google Scholar 

  45. Ju, J., C. Ruan, C.W. Fuller, A.N. Glazer, R.A. Mathies. (1995) Fluorescence energy transfer dye-labeled primers for DNA sequencing and analysis. Proc. Nat. Acad. Sci. USA 92: 4347–51.

    Article  CAS  Google Scholar 

  46. Ju, J., A.N. Glazer, R.A. Mathies. (1996) Energy transfer primers: A new fluorescence labelling paradigm for DNA sequencing and analysis. Nature Medicine 2:246–249.

    Article  CAS  Google Scholar 

  47. Bergerheim, U.S., K. Kunimi, V.P. Collins, P. Ekman. (1991) Deletion mapping of chromosomes 8, 10, and 16 in human prostatic carcinoma. Genes Chromosomes Cancer 3:215–20.

    Article  CAS  Google Scholar 

  48. Cher, M.L., Ito, T., Weidner, N., Carroll, P.R., Jensen, R.H. (1995) Mapping of regions of physical delection on chromosome 16q in prostate cancer cells by fluorescence in situ hybridization (FISH). J. Urology 153:249–254.

    Article  CAS  Google Scholar 

  49. Glazer, A.N., L. Stryer. (1983) Fluorescent Tandem Phycobiliprotein Conjugates: Emission Wavelength Shifting by Energy Transfer. Biophys. J. 43:383–386.

    Article  CAS  Google Scholar 

  50. Rye, H., D. Yue S; Wemmer, M. Quesada, R. Haugland, R. Mathies,, A. Glazer. (1992) Stable fluorescent complexes of double-stranded DNA with bis-intercalating asymmetric cyanine dyes: properties and applications. Nucleic Acids Res 20:2803–2812.

    Article  CAS  Google Scholar 

  51. Benson, S.C., R.A. Mathies, A.N. Glazer. (1993) Heterodimeric DNA-binding dyes designed for energy transfer: stability and applications of the DNA complexes. Nucl. Acids Res. 21:5720–5726.

    Article  CAS  Google Scholar 

  52. Benson, S.C., R Singh, A.N. Glazer. (1993) Heterodimeric DNA-binding dyes designed for energy transfer: synthesis and spectroscopic properties. Nucl. Acids Res. 21:5727–5735.

    Article  CAS  Google Scholar 

  53. Glazer, A.N., H.S. Rye. (1992) Stable Dye-DNA Intercalation Complexes as Reagents for High-Sensitivity Fluorescence Detection. Nature 359:859–861.

    Article  CAS  Google Scholar 

  54. Glazer, A., R. Mathies. (1997) Energy-transfer fluorescent reagents for DNA analyses. Curr Opin Biotechnol 8:94–102.

    Article  CAS  Google Scholar 

  55. Yamada, S., F. Miyoshi, K. Kano, T. Ogawa. (1981) Highly Sensitive Laser Fluorimetry of Europium(III) with l, l, l-Trifluoro-4-(2-Thienyl)-2,4-Butanedione. Anal. Chim. Acta 127: 195–198.

    Article  CAS  Google Scholar 

  56. Weissman, S.I. (1942) Intramolecular energy transfer: the fluorescence of complexes of europium. J. Chem. Phys. 10:214.

    Article  CAS  Google Scholar 

  57. Crosby, G.A., R.E. Whan, R.M. Alire. (1961) Intramolecular energy transfer in rare earth chelates: the role of the triplet state. J. Chem. Phys. 34:743.

    Article  CAS  Google Scholar 

  58. Abusaleh, A., C. Meares. (1984) Excitation and De-Excitation Processes in Lanthanide Chelates Bearing Aromatic Sidechains. Photochem. & Photobiol. 39:763–769.

    Article  CAS  Google Scholar 

  59. Kirk, W.R., W.S. Wessels, F.G. Prendergast. (1993) Lanthanide-Dependent Perturbations of Luminescence in Indolylethylenediaminetetraacetic Acid-Lanthanide Chelate. J. Phys. Chem. 97:10326–10340.

    Article  CAS  Google Scholar 

  60. Lakowicz, J.R. 1997. Long Lifetime Metal-Ligand Complexes as Probes in Biophysics and Clinical Chemistry, In Methods in Enzymology, ed. L. Brand, M. L. Johnson.

    Google Scholar 

  61. Ried, T., A. Baldini, T.C. Rand, D.C. Ward. (1992) Simultaneous visualization of seven different DNA probes by in situ hybridization using combinatorial fluorescence and digital imaging microscopy. Proc. Natl. Acad. Sci. 89:1388–1392.

    Article  CAS  Google Scholar 

  62. Gadella, T.W.J., T.M. Jovin, R.M. Clegg. (1993) Fluorescence Lifetime Imaging Microscopy (FLIM) - Spatial Resolution Of Microstructures On The Nanosecond Time Scale. Biophysical Chem. 48:221–239.

    Article  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Selvin, P.R. (1999). Luminescent Lanthanide Chelates for Improved Resonance Energy Transfer and Application to Biology. In: Applied Fluorescence in Chemistry, Biology and Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59903-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59903-3_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64175-6

  • Online ISBN: 978-3-642-59903-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics