Skip to main content

Strategies for Remediation of Former Opencast Mining Areas in Eastern Germany

  • Chapter
Environmental Impacts of Mining Activities

Abstract

Lignite was for decades the main source of energy and the primary raw material used by the chemical industry in the now German Federal States of Saxony, Saxony-Anhalt, and Brandenburg. Except during the initial phases of extraction, lignite was exclusively recovered by opencast mining. The close ties between industry and mining led to the establishment of major industrial operations such as petrochemical, organochemical, and electrochemical plants located near the mining centers. In terms of its quality and composition, lignite in eastern Germany can be classified into West and East Elbian formations, corresponding to the Central German and the Lusatian mining districts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amann R, Krumpholz L, Stahl DA (1990) Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic and environmental studies in microbiology. J Bacteriol 172:762–770

    Google Scholar 

  • Asmussen G, Strauch G (1998) Sulfate reduction in a flooded lignite mining pit studied by stable sulfur and carbon isotopes. Water, Air & Soil Pollution (in press)

    Google Scholar 

  • Babenzien HD (1996) Microbiological studies of an acidic lake. In: Deutsche Gesellschaft für Limnologie (ed) Abstracts der Jahrestagung 16–20. Sept. 1996 in Schwedt/Oder. Eigenverlag der DGL, Krefeld (in German)

    Google Scholar 

  • Becker PM, Wand H, Weißbrodt E, Kuschk P, Stottmeister U (1997) Distribution of contaminants and the self-purifying potential for aromatic compounds in a carbonization wastewater deposit. Chemosphere 34:731–748

    Article  Google Scholar 

  • Benndorf J (1994) Remediation measures in inland waters: effects on the trophic structure. Limnologica 24:121–135 (in German)

    Google Scholar 

  • Christoph G (1995) Modeling of development for the lake Hufeisensee nearby the subhydric deposit Kanena. In: Glässer W (ed) Workshop Braunkohlebergbaurestseen. UFZ-Bericht 4: 81–93 (in German)

    Google Scholar 

  • Chabbi A, Pietsch W, Hüttl RF (1996) Juncus bulbosus L. as a pioneer of open pit lakes in the Lusatian mining area. In: Bottrell SH (ed) Proceedings of the 4th International Symposium of the Earth’s Surface 22.–28.7.1996, Elkley, Yorkshire, England, 373–378

    Google Scholar 

  • Chabbi A, Pietsch W, Wiehe W, Hüttl RF (1998) Juncus bulbosus: strategies of survival under extreme phytotoxic conditions in acid mine lakes in the Lusatian mining district, Germany. Intern. J. of Ecology and Environ. Sci. (in press)

    Google Scholar 

  • Davison W, George DG, Edwards NJA (1995) Controlled reversal of lake acidification by treatment with phosphate fertilizer. Nature 377:504–507

    Article  Google Scholar 

  • Dermietzel J, Gläser HJ, Haendel D, Kowski P (1995) Complex registration of patches and matter transport from a deposit situated in a former opencast mine: case study-Hufeisensee. Z. geol. Wiss. 23:147–162 (in German)

    Google Scholar 

  • Diersch HJ (1993) GIS-based groundwater flow and contaminant transport modeling — the simulation system FEFLOW In: Ossing F (ed) Praxis der Umweltanalytik 4:187–208

    Google Scholar 

  • Fichtner N (1983) Process for nitrate elimination in water bodies. Acta hydrochim hydrobiol 11: 339–345 (in German)

    Article  Google Scholar 

  • George DG, Davison W (1998) Managing the pH of an acid lake by adding phosphate fertilizer. In: Geller W, Klapper H, Salomons W (eds) Abatement of geogenic acidification in mining lakes. Springer Berlin Heidelberg New York (in press)

    Google Scholar 

  • Gläser HR (1995) Geophysical investigation for the detection of pathways: case study Lake Hufeisensee. In: Glässer W (ed) Workshop Braunkohlebergbaurestseen. UFZ-Bericht 4:94–102 (in German)

    Google Scholar 

  • Glässer W (1995) Influence of the lignite opencast mining on the ground-and surface waters. Geowissenschaften 13: 291–296 (in German)

    Google Scholar 

  • Glässer W, Strauch G, Weiss H (1994) Residues and deposits in the landscape of the former lignite opencast mining area. Exk.-F. u. Veröff. GGW, Exkursion D, Berlin 94:32–38 (in German)

    Google Scholar 

  • Gründig B, Kotte H, Strehlitz B, Ethner K (1992) Biosensor for detection of phenols. Energie 6:24–25 (in German)

    Google Scholar 

  • Gründig B, Strehlitz B, Kotte H, Ethner K (1993) Development of a process-FIA-system using mediator-modified enzyme electrodes. Journal of Biotechnology 31: 277–287

    Article  Google Scholar 

  • Kepler DA and McCleary EC (1994) Successive alkalinity-producing systems (SAPS) for the treatment of acid mine drainage. 3rd Int. Conf. on the Abatement of Acid Drainage. US Bureau of Mines special Publications SP06 A-94, 195–204

    Google Scholar 

  • Klapper H (1991) Control of eutrophication in inland waters. Ellis Horwood, New York

    Google Scholar 

  • Klapper H, Schultze M (1995) Geogenically acidified mining lakes — living conditions and possibilities of restoration. Int Revue ges Hydrobiol. 80: 639–653

    Article  Google Scholar 

  • Klapper H, Geller W, Schultze M (1996) Abatement of acidification in mining lakes in Germany. Lakes & Reservoirs: Research and Management 2: 7–16

    Article  Google Scholar 

  • Klapper H, Schultze M (1997) Sulfur acidic mining lakes in Germany — ways of controlling geogenic acidification. In: Canadian Mine Environment Neutral Drainage Program (MEND) (ed) Proc. of the IVth Int. Conference on Acid Rock Drainage May 31-June 6, 1997, Vancouver, Vol. IV: 1727–1744

    Google Scholar 

  • Kleinmann RLP, Crerar DA, Pacilli RR (1981) Biogeochemistry of acid mine drainage and a method to control formation. Mining Engineering 33:300–304

    Google Scholar 

  • Kopinke F-D, Pörschmann J, Remmler M (1995) Sorption behavior of anthropogenic humic matter. Naturwissenschaften 82:28

    Article  Google Scholar 

  • Kopinke F-D, Pörschmann J, Stottmeister U (1995) Sorption of organic pollutants on anthropogenic humic matter. Environ Sci & Technol 29: 941–950

    Article  Google Scholar 

  • Kotte H, Strehlitz B, Ethner K, Stottmeister U, Gründig B (1993) Biosensor for quantitative determination of phenols. In: Arendt F, Annokkee GJ, Bosnian R, van den Brink WJ (eds) Contaminated soil’ 93 Kluwer Academic Publishers. Dordrecht, pp 945–946

    Google Scholar 

  • Krauss G, Birger A (1996) Analysis of differential groundwater habitats. Mikrobiologie des Grund-Trinkwassers. Schriftenreihe Wasserforschung Bd 1 IFW-Verlag Berlin 211–232 (in German)

    Google Scholar 

  • Lovley DR, Phillips EJP (1987) Rapid assay for microbially reducible ferric iron in aquatic sediments. Appl Environ Microbiol 53:1536–1540

    Google Scholar 

  • Martius G, Stottmeister U (1993) Microbial purification of sewages from lignite industry: Part 1: technological state of the art. Awt Abwassertechnik 44:32–35 (in German)

    Google Scholar 

  • Martius GGS, Wießner A, Stottmeister U (1996) Degradation efficiency and molecular size alteration during the aerobic microbial treatment of lignite pyrolysis deposit water. Applied Microbiology and Biotechnology 45: 692–699

    Article  Google Scholar 

  • Nitzsche HM, Boine J, Mühle K (1997) Investigation of the isotope signature of methane and carbon dioxide in biogenic gases from different sources. Isotopes Environ Health Stud 33: 251–259

    Google Scholar 

  • Nixdorf B, Rücker J, Köcher B, Deneke R (1995) Result on limnology of lakes resulting from the former lignite opencast mining in Brandenburg with emphasis on settlement of the Pelagial. In: Geller W, Packroff G (eds) Abgrabungsseen — Risiken und Chancen. Limnologie aktuell 7. Gustav Fischer, Stuttgart, S 39–52 (in German)

    Google Scholar 

  • Nixdorf B, Schöpke R (1996) Remediation concept of eutrophicated lakes in East Brandenburg and acidic lakes resulting from the former lignite opencast mining in Lusatia. In: Deutsche Gesellschaft für Limnologie (ed) Abstracts der Jahrestagung 16–20. Sep. 1996 in Schwedt/Oder. Eigenverlag der DGL, Krefeld (in German)

    Google Scholar 

  • Ohle W (1981) Photosynthesis and chemistry of an extremly acid bathing pond in Germany. Verh Int Ver Limnol 21:1172–1177

    Google Scholar 

  • Olem H (1991) Liming acidic surface waters. Lewis Publishers, Chelsea

    Google Scholar 

  • Pörschmann J, Kopinke FD, Remmler M, Mackenzie K, Geyer W, Mothes S (1996) Hyphenated techniques for characterizing coal wastewaters and associated sediments. J. Chromatography A 750: 287–301

    Article  Google Scholar 

  • Pörschmann J, Stottmeister U (1993) Methodical investigation of interactions between organic pollutants and humic organic material in coal wastewaters. Chromatographia 36: 207–211

    Article  Google Scholar 

  • Pörschmann J, Zhang Z, Kopinke FD, Pawliszyn J (1997) Solid phase microextraction for determining the distribution of chemicals in aqueous matrices. Anal. Chem. 69:597–600

    Article  Google Scholar 

  • Ringpfeil M, Stottmeister U, Behrens U, Martius G, Buerger G, Wenige L (1988) Aerobic treatment of sewages from lignite (brown coal) processing. In: Wise DL (ed) Biotreatment systems. CRC Press, Boca Raton, pp 1–61

    Google Scholar 

  • Schindler DW (1994) Changes caused by acidification to the biodiversity: productivity and biochemical cycles in lakes. In: Steinberg C, Wright J (eds) Acidification of freshwater ecosystems: implications for the future. Wiley & Sons, New York, pp 154–164

    Google Scholar 

  • Schreck P (1998) Environmental impact of uncontrolled waste disposal in mining and industrial areas in central Germany. Environmental Geology. Springer, Berlin Heidelberg New York 35(1) 66–72

    Google Scholar 

  • Steinberg CEW, Schafer H, Tittel J, Beisker W (1998) Phytoplankton composition and biomass spectra created by flow cytometry and zooplankton composition in mining lakes of different state of acidification. In: Geller W, Klapper H, Salomons W (eds) Abatement of geogenic acidification in mining lakes. Springer, Berlin Heidelberg New York pp 127–145

    Google Scholar 

  • Stottmeister U, Kuschk P, Weißbrodt E, Martius G, Wießner A, Becker PM, Kopinke FD, Pörschmann J, Eismann F (1996) Contaminated sites from carbochemistry in middle Germany — dimension, specificities and remediation strategies. Umwelttagung 1996, 7. bis 10. Oktober 1996, Ulm, (eds) Bayer E, Ballschmiter K, Behret H, Frimmel FH, Merz W, Obst U pp 185–199

    Google Scholar 

  • Stottmeister U, Kuschk P, Wießner A, Weißbrodt E, Martius G, Becker PM, Eismann F, Kotte H (1997) Problems of contaminated sites from carbochemstry: dimensions and first concepts for remediation. In: Christa Knorr, Thomas von Schell (Hrsg), Mikrobieller Schadstoffabbau — ein interdisziplinärer Ansatz, Fried. Vieweg & Sohn Verlagsgesellschaft GmbH Braunschweig/Wiesbaden pp 357–375 (in German)

    Chapter  Google Scholar 

  • Strauch G (1994) Investigations on groundwater and material transport in the Kanena landfill site, Germany. Contribution to CEC Contract EV5V-CT92-0228. Paper on the 3rd Progress Meeting, München, 28.09.1994

    Google Scholar 

  • Strehlitz B, Gründig B, Schumacher W, Kroneck PMH, Kotte H (1996) A nitrite sensor based on a highly sensitive nitrite reductase — mediator coupled amperometric detection. Analytical Chemistry 68: 807–816

    Article  Google Scholar 

  • Strehlitz B, Gründig B, Vorlop KD, Bartholmes P, Kotte H, Stottmeister U (1994) Artificial electron donors for nitrate and nitrite reductases usable as mediators in amperometric biosensors. Fresenius Journal of Analytical Chemistry 349:676–678

    Article  Google Scholar 

  • Wendt-Potthoff K, Neu TR (1998) Microbial processes for potential in situ remediation of acidic lakes. In: Geller W, Klapper H, Salomons W (eds) Abatement of geogenic acidification in mining lakes. Springer, Berlin Heidelberg New York 269–284

    Google Scholar 

  • Wießner A, Kuschk P, Martius G, Eismann F, Zehnsdorf A, Weißbrodt E, Stottmeister U (1994) Degradation of harmful substances in deposed pyrolysis waste water. Wasser Abwasser Praxis 4: 44–48 (in German)

    Google Scholar 

  • Wießner A, Kuschk P, Weißbrodt E, Stottmeister U, Pörschmann J, Kopinke F-D (1993) Characterization of water and sediment of a lignite carbonization water deposit. Wasser Abwasser Praxis 6: 375–379 (in German)

    Google Scholar 

  • Ziechmann W (1980) Humic substances. Verlag Chemie, Weinheim, p 353 (in German)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stottmeister, U. et al. (1999). Strategies for Remediation of Former Opencast Mining Areas in Eastern Germany. In: Azcue, J.M. (eds) Environmental Impacts of Mining Activities. Environmental Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59891-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59891-3_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64169-5

  • Online ISBN: 978-3-642-59891-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics