Skip to main content

Abstract

The measurement of the standard laser performance is generally assumed to be quite easy and to require no particular care. The case of semiconductor lasers is, however, more complicated. Under standard working conditions, semiconductor lasers have a material gain coefficient much higher than the other lasers and a dependence of the refractive index on the gain. These features, together with the low Q factor of a typical semiconductor-laser cavity make these devices very sensitive to external reflections. This reflects on an intrinsic difficulty in performing reliable measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.W. Tkach and A.R. Chraplyvy, “Regimes of feedback effects in 1.5-jLim distributed feedback lasers”, J. Lightwave TechnoL, vol. 4, pp. 1655–1661, 1986.

    Article  Google Scholar 

  2. A. Yariv, Quantum Electronics, 3rd ed., John Wiley & Sons, New York, 1989.

    Google Scholar 

  3. B. Daino, P. Spano, M. Tamburrini, and S. Piazzolla, “ Phase noise and spectral line shape in semiconductor lasers”, IEEEJ. Quantum Electron, vol. 19, pp. 266–270, 1983.

    Article  Google Scholar 

  4. M.W. Fleming and A. Mooradian, “Fundamental line broadening of single-mode Alas diode lasers”, Appl Phys. Lett., vol. 38, pp. 511–513, 1981.

    Article  Google Scholar 

  5. C.H. Henry, “Theory of the linewidth of semiconductor lasers”, IEEEJ. Quantum Electron., vol. 18, pp. 259–264, 1982.

    Article  Google Scholar 

  6. P. Spano, S. Piazzolla, and M. Tamburrini, “ Theory of noise in semiconductor lasers in the presence of optical feedback”, IEEEJ. Quantum Electron., vol. 20, pp. 350–357, 1984.

    Article  Google Scholar 

  7. H.E. Rowe, Signal and Noise in Communication Systems, Van Nostrand Reinhold, New York, 1965.

    Google Scholar 

  8. T Okoshi, K. Kikuchi, and A. Nakajama, “ Novel method for high resolution measurement of laser output measurements”, Electron. Lett., vol. 16, pp. 630–631, 1980.

    Article  Google Scholar 

  9. M.O. Van Deventer, P. Spano, and S.K. Nielsen, “ Comparison of DFB laser linewidth measurement techniques. Results from COST 215 round robin”, Electron. Lett., vol. 26, pp. 2018–2020, 1990.

    Article  Google Scholar 

  10. B. Tromborg, H.E. Lassen, H. Olesen, and X. Pan, “ Travelling wave method for calculation of linewidth, frequency tuning, and stability of semiconductor lasers”, IEEE Photon. TechnoL Lett., vol. 4, pp. 985–988, 1992.

    Article  Google Scholar 

  11. P. Spano, S. Piazzolla, and M. Tamburrini, “ Phase noise in semiconductor lasers: A theoretical approach”, IEEEJ. Quantum Electron., vol. 19, pp. 1195–1199, 1983.

    Article  Google Scholar 

  12. R. Paoletti, D. Bertone, A. Bricconi, R. Fang, L. Greborio, G. Magnetti, and M. Meliga, “ Comparison of Optical and Electrical Modulation Bandwidths in three different 1.55 (im InGaAsP Buried Laser Structures”, in SPIE International Symposia- Photonics West ’96, pp. 296–305, 1996.

    Google Scholar 

  13. O. Kjebon, R. Schatz, S. Lourdudoss, S. Nilsson, and B. Stalnacke, “Modulation response measurements and evaluation of MQW InGaAsP lasers of various designs,” in “High-Speed Semiconductor Laser Sources”, Paul A. Morton, Deborah L. Crawford, Editors, Proc. SP/£2684, pp. 138-152, 1996.

    Google Scholar 

  14. D. Bertone, A. Bricconi, R.Y. Fang, L. Greborio, G. Magnetti, M. Meliga, and R. Paoletti, “ MOCVD Regrowth of Semi-Insulating InP and p-n Junction Blocking Layers Around BRS Laser Stripes”, J. Crystal Growth, vol. 170, pp. 715 – 718, 1997.

    Article  Google Scholar 

  15. R. Nagarajan, M. Ishikawa, T. Fukushima, R.S. Geels, and J.E. Bowers, “ High Speed Quantum-Well Lasers and Carrier Transport Effects”, IEEEJ. Quantum Electron., vol. 28, No. 10, pp1990–2008, 1992.

    Article  Google Scholar 

  16. W.H. Cheng, D. Renner, K.L. Hess, and S.W. Zehr, “Dynamic characteristics of semi-insulating current blocking layers: Application to modulation performance of 1.3 im InGaAsP lasers”, J. Appl. Phys., 64 (3), 1988.

    Google Scholar 

  17. P.A. Morton, R.A. Logan, T. Tanbun-Ek, P.F. Sciortino Jr., A.M. Sergent, R.K. Montgomery, and B.T. Lee, “ 25 GHz Bandwidth 1.55 jim GalnAsP p-Doped Strained Multiquantum-Well Lasers”, Electron. Lett., vol. 28, No. 23, pp. 2156–2157, 1992.

    Article  Google Scholar 

  18. J.E. Bowers, “High Speed Semiconductor Laser Design and Performance”, Solid State Electron., vol. 30, pp. 1–11, 1987.

    Article  MathSciNet  Google Scholar 

  19. F. Delpiano, R. Paoletti, P. Audagnotto, and M. Puleo, “ High frequency characterisation of high performance DFB laser modules,” IEEE Trans. Comp., Pkg., Mfg. Tech., vol. 17, no 3, pp. 412–417, 1994.

    Google Scholar 

  20. R. Olshansky, C.B.Su, J. Manning, and W. Powazinik, “ Measurement of radiative and nonradiative recombination rates in InGaAsP and AlGaAs light sources”, IEEEJ. Quantum Electron., vol. QE_20, pp. 838–854, 1984.

    Article  Google Scholar 

  21. Y. Zou. S. Osinski, P. Grodzinski, P.D. Dapkus, W. Rideaut, W.F. Sharfin, and F.D. Crawford,“ Experimental verification of strain benefits in 1.5 Jim semiconductor lasers by carrier lifetime and gain measurements”, IEEE Photon. Technol. Lett., vol. 4, p 1315–1318, 1992.

    Article  Google Scholar 

  22. G.E. Shtengel, D.A. Ackerman, and P. Morton, “ True carrier lifetime measurements of semiconductor lasers”, Electron. Lett., vol. 31, p. 1747–1748, 1995.

    Article  Google Scholar 

  23. R. Paoletti, M. Meliga, and I. Montrosset, “ Optical modulation technique for carrier lifetime measurement in semiconductor lasers,” IEEE Photon. Technol. Lett., vol. 8, no 11, pp. 1447–1449, 1996.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Paoletti, R., Spano, P. (1999). Measurements on DFB lasers. In: Guekos, G. (eds) Photonic Devices for Telecommunications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59889-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59889-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64168-8

  • Online ISBN: 978-3-642-59889-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics