Skip to main content

Abstract

The behaviour of DFB lasers is so complex that it cannot be described analytically. Neither can the design of these lasers rely on a number of simple analytical formulae as is the case for FP lasers. The main cause of this complex behaviour is the strong dependence of the distributed feedback, and hence of the facet loss, on local refractive index and carrier density variations. The main consequences of it are changes in side mode rejection or stability and significant contributions to FMresponse and harmonic distortion, which are not easy to predict.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.Buus, “Principles of semiconductor laser modeling”, IEE Proc. J, vol. 132, pp. 42–51,1985.

    Google Scholar 

  2. R.S.Tucker, “High-speed modulation of semiconductor lasers”, J. Lightwave TechnoL, vol.LT-3,pp. 1180–1192, 1985.

    Article  Google Scholar 

  3. S.Sasaki, M.M.Choy, and N.K.Cheung, “ Effects of dynamic spectral behaviour and mode-partitioning of 1550 nm distributed feedback lasers on Gbit/s transmission systems”, Electron. Lett., vol. 24, pp. 26–28, 1988.

    Article  Google Scholar 

  4. D.Novak and R.S.Tucker, “Millimetre-wave signal generation using pulsed semiconductor lasers”, Electron. Lett., vol. 30, pp. 1430–1431, 1994.

    Article  Google Scholar 

  5. P.M.Boers, M.T.Vlaardingerbroek, and M.Danielsen, “ Dynamic behaviour of semiconductor lasers”, Electron.Lett., vol. 11, pp. 206–208, 1975.

    Article  Google Scholar 

  6. H.Statz and Gde Mars, “Transient and oscillation pulses in masers”, pp. 530–537 in C.H. Townes Ed., Quantum Electronics, Columbia Press, New York, 1960.

    Google Scholar 

  7. M. Osinski and M.J.Adams, “Transient time-averaged spectra of rapidly-modulated semiconductor lasers”, IEE Proc. J, vol. 132, pp. 34–37, 1985.

    Google Scholar 

  8. R. Schatz, “Longitudinal spatial instability in symmetric semiconductor lasers due to spatial hole burning”, IEEEJ. Quantum Electron., vol. 28, pp. 1443–1449, 1992.

    Article  Google Scholar 

  9. J-I. Kinoshita and K. Matsumoto, “Transient chirping in distributed feedback lasers: effect of spatial hole-burning along the laser axis”, IEEE J.Quantum Electron., vol. 24, pp. 2160–2169, 1988.

    Article  Google Scholar 

  10. M.J.Adams and M.Osinski, “Longitudinal mode competition in semiconductor lasers. Rate equations revisited”, IEE Proc. I, vol. 129, pp. 271–274, 1982.

    Google Scholar 

  11. M.Yamada, “Theory of mode competition noise in semiconductor injection lasers”, IEEE]. Quantum Electron., vol. 22, pp. 1052–1059, 1986.

    Article  Google Scholar 

  12. R.S. Tucker, U. Koren, G. Raybon, C.A. Burrus, B. 1. Miller, T.L. Koch and G. Eisenstein, “40 GHz active mode-locking in a 1.5 urn monolithic extended-cavity laser,” Electron Lett., vol. 25, pp. 621–622, 1989.

    Article  Google Scholar 

  13. M.S.Demokan, “A model of a diode laser actively mode-locked by gain modulation”, Int.J.Electron.,vol. 60, pp. 67–80, 1986.

    Article  Google Scholar 

  14. KHsu, C.MVerber, and RRoy, “ Pulse fluctuation statistics of an actively modelocked external-cavity semiconductor laser”, Appl.Phys.Lett., vol. 60, pp307–309, 1992.

    Article  Google Scholar 

  15. A.JLowery, “A new dynamic semiconductor laser model based on the transmissionline modelling method”, IEE Proc. J, vol. 134, pp. 281–289, 1987.

    Article  Google Scholar 

  16. A.JLowery, C.N.Murtonen, and A.J.Keating, “ Modelling the static and dynamic behavior of quarter-wave-shifted DFB lasers”, IEEEJ. Quantum Electron., vol. 28, pp. 1874–1883, 1992

    Article  Google Scholar 

  17. A.JLowery, “New time-domain model for active mode-locking based on the transmission-line laser model”, IEE Proc. J, vol. 136, pp. 264–272, 1989.

    Article  Google Scholar 

  18. J.E.AWhiteaway, A.P.Wright, B.Garrett, G.H.BThompson, et al. , “ Detailed largesignal dymanic modelling of DFB laser structures and comparison with experiment”, Opt. Quantum Electron., vol. 26, S817–S842, 1994.

    Article  Google Scholar 

  19. G. Bjork and O. Nilsson, “A new exact and efficient numerical matrix theory of complicated laser structures: Properties of asymmetric phase-shifted DFB lasers”, J. Lightwave TechnoL, vol. 5, pp. 140–146, 1987.

    Article  Google Scholar 

  20. H. Bissessur, “ Effects of hole burning, carrier-induced losses and the carrierdependent differential gain on the static characteristics of DFB lasers”, J. Lightwave Technol, vol. 11, pp. 1617–1630, 1992.

    Article  Google Scholar 

  21. R. Bonello, I. Montrosset, “Statistical and Dynamical Analysis of Multisection and Multielectrode Semiconductor Lasers”, SPIE vol 1787, pp. 151–163, 1992.

    Article  Google Scholar 

  22. PVankwikelberge, G. Morthier, R. Baets., “ CLADISS - A longitudinal multimode model for the analysis of the static, dynamic, & stochastic behaviour of diode lasers with distributed feedback”, IEEEJ. Quantum Electron., vol. 26, pp. 1728–41, 1990.

    Article  Google Scholar 

  23. I. Orfanos, T. Sphicopoulos, A. Tsigopoulos, C. Caroubalos, “A Tractable Above-Threshold Model for the Design of DFB and Phase-Shifted DFB Lasers”, IEEEJ. Quantum Electron., vol. 27, pp. 946–956, 1991.

    Article  Google Scholar 

  24. J.EWhiteaway, G.H.BThompson, A.JCollar, and C.J. Armistead, “ The design and assessment of A/4 phase-shifted DFB lasers”, IEEEJ. Quantum Electron., 1989, vol. 25, pp. 1261–1279,1989.

    Article  Google Scholar 

  25. SHansmann, “Transfer matrix analysis of the spectral properties of complex distributed feedback laser structures”, IEEEJ. Quantum Electron., vol. 28, pp. 2589–2595, 1992.

    Article  Google Scholar 

  26. M.G.Davies and R.F.O’Dowd, “A transfer matrix method based large-signal dynamic model for multielectrode DFB lasers”, IEEEJ. Quantum Electron., vol. 30, pp. 2458–2466, 1994.

    Article  Google Scholar 

  27. G.Morthier, R. Baets et al. (COST 240 Group ), “Comparison of different DFB laser models within the European COST-240 collaboration”, IEE Proc. Optoelectron., vol. 141, pp. 82–88, 1994.

    Article  Google Scholar 

  28. U. Bandelow, R. Schatz, and H.J. Wunsche, “ A correct single-mode photon rate equation for multi-section lasers”, IEEE Photon. Technol. Lett., vol. 8, no. 5, pp. 614–616, 1996.

    Article  Google Scholar 

  29. R. Schatz, Dynamics of Spatial Hole Burning Effects in DFB Lasers11, IEEEJ. Quantum Electron., vol. 31, no. 11, pp. 1981–1993, 1995

    Article  Google Scholar 

  30. HOlesen, BTromborg, XPan and H.E.Lassen, “ Stabilities and dynamic properties of multi-electrode laser diodes using a Green’s function approach”, IEEEJ. Quantum Electron., vol. 29, pp. 2282–2301, 1993.

    Article  Google Scholar 

  31. C.FTsang, D.DMarcenac, J.ECarroll and L.MZhang, “ Comparison between ’power matrix model1 and ’time domain model1 in modelling large signal responses of DFB lasers”, IEE Proc. Optoelectron., vol. 141, pp. 89–96, 1994.

    Article  Google Scholar 

  32. A.JLowery, “Modelling ultra-short pulses (less than the cavity transit time) in semiconductor laser amplifiers”, Int J. Optoelectron., vol. 3, pp. 497–508, 1988.

    Google Scholar 

  33. D.DMarcenac and J.ECarroll, “Quantum-mechanical model for realistic Fabry-Perot lasers”, IEE Proc. J, vol. 140, pp. 157–171, 1993.

    Google Scholar 

  34. U. Bandelow, H.J. Wunsche, H. Wenzel, “Theory of Selfpulsations in Two-Section DFB Lasers”, IEEE Photon. Technol. Lett., vol. 5, pp. 1176–1179, 1993.

    Article  Google Scholar 

  35. X. Li, W.-P. Huang, “Simulation of DFB Semiconductor Lasers Incorporating Thermal Effects”, IEEEJ. Quantum Electron., vol. 31, pp. 1848–1855, 1995.

    Article  Google Scholar 

  36. A.D. Sadovnikov, W.-P. Huang, “A Two-Dimensional DFB Laser Model Accounting for Carrier Transport Effects”, IEEEJ. Quantum Electron., vol. 31, pp. 1856–1862, 1995.

    Article  Google Scholar 

  37. K. Yokoyama, T Yamanaka, S. Seki, “Two-Dimensional Numerical Simulator for Multielectrode Distributed Feedback Laser Diodes”, IEEEJ. Quantum Electron., vol. 29, pp. 856–863, 1993.

    Article  Google Scholar 

  38. S.F. Yu, R.G.S. Plumb, L.M. Zhang, M.C. Nowell, I.E. Carroll, “Large Signal Dynamic Behaviour of Distributed Feedback Lasers including Lateral Effects”, IEEEJ. Quantum Electron., vol. 30, pp. 1740–1750, 1994.

    Article  Google Scholar 

  39. J. Kinoshita, “Modeling of high-speed DFB lasers considering the spatial holeburning effect using three rate equations”, IEEEJ. Quantum Electron., vol. 30, pp. 929–938, 1994.

    Article  Google Scholar 

  40. G. Morthier, “An accurate rate equation description for DFB lasers taking spatial hole burning into account”, IEEEJ. Quantum Electron., vol. 33, pp. 231–237, 1997.

    Article  Google Scholar 

  41. W. Huang, X. Li, T. Makino, “Analytical formulas for modulation responses of semiconductor DFB lasers”, IEEEJ. Quantum Electron., vol. 31, pp. 842–851, 1995.

    Article  Google Scholar 

  42. Y.C. Chan, M. Premaratne, and A.J. Lowery, “ Semiconductor laser linewidth from the transmission-line laser model”, IEE Proc. Optoelectron., vol. 144, pp. 246–252, 1997.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Morthier, G., Lowery, A. (1999). Modelling of DFB laser diodes. In: Guekos, G. (eds) Photonic Devices for Telecommunications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59889-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59889-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64168-8

  • Online ISBN: 978-3-642-59889-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics