Skip to main content

Abstract

In the research of optical devices and circuits, a principal theoretical problem is to calculate how a lightwave propagates in an optical medium having an arbitrary refractive-index distribution. Optical waveguide devices are usually very long compared to their transversal dimensions: the ratio is typically of the order of a thousand. Therefore, a rigorous analysis is difficult or not possible at all.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.D. Feit and J.A. Fleck, “Light propagation in graded-index optical fibers.” Appl Opt., vol. 17, p. 3990, 1978.

    Article  Google Scholar 

  2. D. Marcuse, Theory of dielectric optical waveguides, 2nd edn., Academic Press, Boston, 1991.

    Google Scholar 

  3. R. Marz, Integrated Optics: Design and Modeling, Artech House, Boston, 1995

    Google Scholar 

  4. H.J.W.M. Hoekstra, “On beam propagation methods for modelling in integrated optics”, Opt. Quantum Electron., vol. 29, pp. 157–171, 1997.

    Article  Google Scholar 

  5. H.E. Hernandez-Figueroa, “Simple Nonparaxial Beam-Propagation Method for Integrated Optics,” J. Lightwave Technol, vol. 12, p. 644, 1994.

    Article  Google Scholar 

  6. G.R. Hadley, “Wide-angle beam propagation using Pade approximant operators,” Opt. Lett, vol. 17, pp. 1426–1428, 1992.

    Article  MathSciNet  Google Scholar 

  7. Y. Chung and N. Dagli, “Explicit Finite Difference Beam Propagation Method: Application to Semiconductor Rib Waveguide Y-Junction Analysis,” Electron. Lett., vol. 26, No. 11, pp. 711–712, 1990.

    Article  Google Scholar 

  8. G.R. Hadley, “Multistep method for wide-angle beam propagation,” Opt. Lett., vol. 17, No. 24, pp. 1743–1745, 1992.

    Article  MathSciNet  Google Scholar 

  9. D. Schulz, C. Glingener, M. Bludszuweit, and E. Voges, “Mixed Finite Element Beam Propagation Method”, Proc. European Conference on Integrated Optics, 1977, pp. 226–229.

    Google Scholar 

  10. A. Splett, M. Majd, and K. Petermann,“ A Novel Beam Propagation Method for Large Refractive Index Steps and Large Propagation Distances,” IEEE Photon. Technol. Lett., vol. 3, No. 5, pp. 466–468, 1991.

    Article  Google Scholar 

  11. D. Schulz, C. Glingener, and E. Voges, “Novel Generalized Finite-Difference Beam Propagation Method,” IEEEJ. Quantum Electron., vol. 30, No. 4, pp. 1132–1140, 1994.

    Article  Google Scholar 

  12. S. Helfert and R. Pregla, “Efficient Analysis of Periodic Structures,” J. Lightwave TechnoL, vol. 16, pp. 1694–1702, 1998.

    Article  Google Scholar 

  13. J. Čtyroký, S. Helfert, and R. Pregla, “Analysis of a deep waveguide Bragg grating”, Opt. Quantum Electron., accepted. 1998.

    Google Scholar 

  14. J. Čtyroký, J. Homola, and M. Skalsky, “Modelling of surface plasmon resonance waveguide sensor by complex mode expansion and propagation method,” Opt. Quantum Electron., vol. 29, No. 2, pp. 301–311, 1997.

    Article  Google Scholar 

  15. G. Sztefka, and H.P. Nolting, “ Bidirectional eigenmode propagation for large refractive index steps,” IEEE Photon. TechnoL Lett., vol. 5, pp. 554–557, 1993.

    Article  Google Scholar 

  16. J. Willems, J. Haes, and R. Baets, “The bidirectional mode expansion method for two dimensional waveguides: The TM case,” Opt. Quantum Electron., Special Issue on Optical Waveguide Theory and Numerical Modeling, vol. 27, no. 10, pp. 995–1108, 1995.

    Article  Google Scholar 

  17. J.P. Bérenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Computational Phys., vol. 114, pp. 185–200, 1994.

    Article  MATH  Google Scholar 

  18. W. P. Huang, C. L. Xu, W. Lui, and K. Yokoyama, “The Perfectly Matched Layer (PML) Boundary Condition for the Beam Propagation Method,” IEEE Photon. TechnoL Lett. vol. 8, No. 5, pp. 649–651, 1996.

    Article  Google Scholar 

  19. D.S. Katz, E.T. Thiele, and A. Tavlove, “Validation and Extension to Three Dimensions of the Berenger PML Absorbing Boundary Condition for FD-TD Meshes,” IEEE Microwave Guided Wave Lett., vol. 4, No. 8, pp. 268–270, 1994.

    Article  Google Scholar 

  20. G.R. Hadley, “Transparent boundary condition for beam propagation,” Opt. Lett., vol. 16, No. 9, pp. 624–626, 1991.

    Article  Google Scholar 

  21. G.R. Hadley, “Transparent Boundary Condition for the Beam Propagation Method,” IEEEJ. Quantum Electron., vol. 28, No. 1, pp. 363–370, 1992.

    Article  Google Scholar 

  22. G. Mur, “Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic field equations,” IEEE Trans. Electromagnetic Compatibility, vol. EMC-23, pp. 377–382, 1981.

    Article  Google Scholar 

  23. T.G. Moore, J.G. Blachak, A. Taflove, and G.A. Kriegsmann, “ Theory and application of radiation boundary operators,” IEEE Trans. Antennas Propagat., vol. AP-36, pp. 1797–1812, 1988.

    Article  Google Scholar 

  24. H.J.W.M. Hoekstra, G.J.M. Krijnen, and P.V. Lambeck, “Efficient Interface Conditions for the Finite Difference Beam Propagation Method,” J. Lightwave Technol., vol. 10, No. 10, pp. 1352–1355, 1992.

    Article  Google Scholar 

  25. C. Vasallo,“Tmprovement of finite difference methods for step-index optical waveguides,” IEE Proc. J, vol. 139, No. 2, pp. 137–142, 1992.

    Google Scholar 

  26. S. Helfert, and R. Pregla, “Finite Difference Expressions for Arbitrarily Positioned Dielectric Steps in Waveguide Structures,” J. Lightwave TechnoL, vol. 14, No. 10, pp. 2414–2421, 1995.

    Article  Google Scholar 

  27. Y. Chung and N. Dagli, “An assessment of finite difference beam propagation method,” IEEEJ. Quantum Electron., vol. 26, pp. 1335–1339, 1990.

    Article  Google Scholar 

  28. G.R. Hadley, “Transparent boundary condition for the beam propagation method,” IEEEJ. Quantum Electron., vol. 28, pp. 363–370, 1992.

    Article  Google Scholar 

  29. R. Pregla and D. Kremer, “ Method of lines with special absorbing boundary conditions-analysis of weakly guiding optical structures,” IEEE Microwave Guided Wave Lett, vol. 2, pp239–241, 1992.

    Article  Google Scholar 

  30. C. Vassallo and F. Collino, “Highly efficient absorbing boundary conditions for the beam propagation method,” J. Lightwave Technol, vol. 14, pp. 1570–1577, 1996

    Article  Google Scholar 

  31. C. Vassallo, “Improvement of finite difference methods for step-index optical waveguides”, IEE Proc. J, vol. 139, pp. 137–142, 1992.

    Google Scholar 

  32. H.J.W.M. Hoekstra, G.J.M. Krijnen, and P.V. Lambeck, “ Efficient interface conditions for the finite difference beam propagation method,” J. Lightwave Technol. vol. 10, pp. 1352–1355,1992.

    Article  Google Scholar 

  33. D. Yevick and M. Glasner, “Forward wide-angle wave propagation in semiconductor rib waveguides,” Opt. Lett, vol. 15, pp. 174–176, 1990.

    Article  Google Scholar 

  34. G.R. Hadley, “Multistep method for wide angle propagation,” Opt. Lett., vol. 17, pp. 1743–1745, 1992.

    Article  MathSciNet  Google Scholar 

  35. H.J.W.M. Hoekstra, G.J.M. Krijnen, and P.V. Lambeck, “ New formulation of the BPM based on the SVEA,” Opt. Commun., vol. 97, pp. 301–303, 1993.

    Article  Google Scholar 

  36. H.J.W.M. Hoekstra, “On beam propagation methods for modelling in integrated optics,” Opt. Quantum Electron., vol. 29, pp. 157–171, 1997.

    Article  Google Scholar 

  37. C. Vassallo, “Reformulation for the beam propagation method,” J.Opt.Soc. Am. A, vol. 10, pp. 2208–2216, 1993.

    Article  Google Scholar 

  38. H.-P. Nolting and R. Ma’rz, “Results of benchmark test for different numerical BPM algorithms,” J. Lightwave Techol, vol. 13, pp. 216–224,1995.

    Article  Google Scholar 

  39. C. Vassallo, “Wide angle BPM and power conservation,” Electron. Lett., vol. 31, pp. 130–131, 1995.

    Article  Google Scholar 

  40. J. Willems, J. Haes, and R. Baets, “The bi-directional mode expansion method for two dimensional waveguides: the TM case,” Opt. Quantum Electron., vol. 27, pp. 995–1008, 1995.

    Article  Google Scholar 

  41. M.J.N. van Stralen, H. Blok, and M.V. de Hoop, “Design of sparse matrix representations for the propagator used in the BPM and directional wave field decomposition,” Opt. Quantum. Electron., vol. 29, pp. 179–197, 1997.

    Article  Google Scholar 

  42. P. Liisse and H.-G. Unger, “ Stability properties of 3D vectorial and semivectorial BPMs utilizing a multi-grid equation solver,” Opt. Quantum Electron., vol 29, pp. 173–178, 1997.

    Article  Google Scholar 

  43. F. Horst, H.J.W.M. Hoekstra, A. Driessen, and T.J.A. Popma, “Simulation of a self-switching nonlinear Bragg reflector using realistic nonlinear parameters,” CLEO, Hamburg, 1996; F.Horst, thesis, 1997.

    Google Scholar 

  44. G.J.M. Krijnen, W. Torruellas, G.I. Stegeman, H.J.W.M. Hoekstra, and P.V. Lambeck, “ Optimization of SHG and nonlinear phase-shifts in the Cerenkov regime,” IEEEJ. Quantum Electron., vol. 4, pp. 729–738, 1996.

    Article  Google Scholar 

  45. R. Pregla and W. Pascher, “The Method of Lines”. InT. Itoh, ),Numerical Techniques for Microwave and Millimeter Wave Passive Structures. J. Wiley, New York, pp. 381–446, 1989

    Google Scholar 

  46. R. Pregla, “ The Method of Lines for the Unified Analysis of Microstrip and Dielectric Waveguides,” Electromagnetics, vol.15, pp. 441–456, 1995.

    Article  Google Scholar 

  47. R. Pregla, “The Method of Lines for Modeling of Integrated Optic Structures.” Latsis Symposium, Zurich, pp. 216–229, 1995.

    Google Scholar 

  48. U. Rogge and R. Pregla, “Method of Lines for the Analysis of Dielectric Waveguides”, J. Lightwave TechnoL, vol. 11, pp. 2015–2020, 1993.

    Article  Google Scholar 

  49. M. Bertolotti, P. Masciulli, and C. Sibilia, “MoL Numerical Analysis of Nonlinear Planar Waveguide,” J. Lightwave TechnoL, vol. 12, pp. 784–789, 1994.

    Article  Google Scholar 

  50. R. Pregla, J. Gerdes, E. Ahlers, and S. Helfert, “Algorithm for Waveguide Bends and Vectorial Fields”, inTechn. Digest on Integrated Photonics Research, (Optical Society of America, Washington, DC), vol. 9, pp. 32–33, 1992.

    Google Scholar 

  51. J. Gerdes, S. Helfert, and R. Pregla, “Three-dimensional Vectorial Eigenmode Algorithm for Nonparaxial Propagation in Reflecting Optical Waveguide Structures.” Electron. Lett., vol. 31, No. 1, pp. 65–66, 1995.

    Article  Google Scholar 

  52. R. Pregla, “MoL-BPM Method of Lines Based Beam Propagation Method,” Methods for Modeling and Simulation of Guided-Wave Optoelectronic Devices, InW.P. Huang (ed),PIER 11 in Progress in Electromagnetic Research, EMW Publishing, Cambridge, Massachusetts, USA, pp. 51–102, 1995.

    Google Scholar 

  53. K.H. Helf, J. Gerdes, and R. Pregla, “ Full-Wave Analysis of Traveling-Wave Electrodes with Finite Thickness for Electro-Optic Modulators by the Method of Lines,”J. Lightwave TechnoL, vol. 9, pp. 461–467, 1991.

    Article  Google Scholar 

  54. R. Pregla, “Method of Lines for the Analysis of Multilayered Gyrotropic Waveguide Structures,” IEE Proc. H9 vol. 140, pp. 183–192, 1993.

    Google Scholar 

  55. R. Pregla and E. Ahlers, “The Method of Lines for the Analysis of Discontinuities in Optical Waveguides,” Electron. Lett. vol. 29, No. 21, pp. 1845–1847, 1993.

    Article  Google Scholar 

  56. W. Pascher and R. Pregla, “ Analysis of Curved Optical Waveguides by the Vectorial Method of Lines,” Radio Science vol. 28, pp. 1229–1233, 1993.

    Article  Google Scholar 

  57. R. Pregla E. Ahlers, “Method of Lines for Analysis of Arbitrarily Curved Waveguide Bends,” Electron. Lett., vol. 30, No. 18, pp. 1478–1479, 1994.

    Article  Google Scholar 

  58. S. Helfert, Analysis of Curved Bends in Arbitrary Optical Devices using Cylindrical Coordinates, Opt. Quantum Electron., accepted, 1998.

    Google Scholar 

  59. S. Helfert and R. Pregla, “Modeling of Taper Structures in Cylindrical Coordinates,” Proc. Integrated Photonics Research Topical Meeting, Dana Point, USA, vol. 7, pp. 30–32, 1995.

    Google Scholar 

  60. S. Helfert and R. Pregla, “New developments of a Beam Propagation Algorithm Based on the Method of Lines,” Opt. Quantum Electron., No.25, pp. 943–950, 1993.

    Google Scholar 

  61. S. Helfert and R. Pregla, “A Very Stable and Accurate Algorithm for the Analysis of Periodic Structures with a Finite Number of Periods,” Proc. Progress in Electromagnetics Research (PIERS), Hong Kong, vol. 1, p. 105, 1997.

    Google Scholar 

  62. U. Rogge and R. Pregla, “ Method of Lines for the Analysis of Dielectric Waveguides.” J. Lightwave Technol., vol. 11, pp. 2015–2020, 1993.

    Article  Google Scholar 

  63. A.S. Sudbø, “Improved formulation of the film mode matching method for mode field calculations in dielectric waveguides,” Pure Appl. Opt. (J. Europ. Opt. Soc. A) vol. 3, pp. 381–388, 1994.

    Article  Google Scholar 

  64. A.S. Sudbø, “Film Mode Matching: A versatile method for mode field calculations in dielectric waveguides,” Pure Appl. Opt. (J. Europ. Opt. Soc. A) vol. 2 pp. 211–233, 1993.

    Article  Google Scholar 

  65. R. Pregla, “ The Method of Lines as Generalized Transmission Line Technique for the Analysis of Multilayered Structures,” AEU vol. 50, pp. 293–300, 1996.

    Google Scholar 

  66. R. Pregla, “General Formulas for the Method of Lines in Cylindrical Coordinates,” IEEE Trans. Microwave Theory Tech. vol. 43, pp. 1617–1620, 1995.

    Article  Google Scholar 

  67. R. Pregla, “ Concatenations of waveguide sections,” IEE Proc H, vol. 144: pp. 119–125, 1997.

    Google Scholar 

  68. G. Stefka and H.-P. Nolting, “ Bidirectional Eigenmode Propagation for Large Refractive Index Steps”, Photon. Technol. Lett. vol. 5, pp. 554–557, 1993.

    Article  Google Scholar 

  69. J. Willems, J. Haes, and R. Baets, “The Bidirectional Mode Expansion Method for Two Dimensional Waveguides: The TM-Case”, Opt. Quantum Electron. Vol. 27, no. 10, p. 995–1007, 1995.

    Article  Google Scholar 

  70. M.C. Amann, “Rigorous Waveguiding Analysis of the Separated Multiclad-Layer Stripe-Geometry Laser”, IEEEJ. Quantum Electron, vol. 22, pp. 1992–1998, 1986.

    Article  Google Scholar 

  71. W. Schlosser and H.-G. Unger, “Partially Filled Waveguides and Surface Waveguides of Rectangular Cross Section”, In L. Young (Ed.), Advances in Microwaves vol. 1, pp. 319-387, Academic Press, 1966.

    Google Scholar 

  72. C.H. Henry and Y. Shani., “Analysis of Mode Propagation in Optical Waveguide Devices by Fourier Expansion”, IEEEJ. Quantum Electron, vol. 27 pp. 523–530, 1991.

    Article  Google Scholar 

  73. J. Chilwell and I. Hodgkinson, “Thin-films field-transfer matrix theory of planar multilayer waveguides and reflection prism-loaded waveguides”, J. Opt. Soc. Am. vol. A-1, pp. 742–753, 1984.

    Article  Google Scholar 

  74. Y. Chung and N. Dagli, Integrated Photonics Research ’92, New Orleans, paper WE4-1, 1992

    Google Scholar 

  75. P. Kaczmarski and P.E. Lagasse, “ Bidirectional Beam Propagation Method”, Electron. Lett. vol. 24, pp. 675–676, 1988.

    Article  Google Scholar 

  76. A.D. Bressler, G.H. Joshi, and N. Marcuvitz, “ Orthogonality Properties in Passive and Active Uniform Wave Guides”, J. Appl. Phys. vol. 29, pp. 794–799, 1958.

    Article  MathSciNet  Google Scholar 

  77. J. Willems, J. Haes, R. Baets, G. Sztefka, and H.-P. Nolting, “Eigenmode Propagation Analysis of Radiation Losses in Waveguides with Discontinuities and Grating-Assisted Couplers”, Proc. Integrated Photonics Research Technical Digest Series vol. 10, pp. 229-232, Palm Springs 1993.

    Google Scholar 

  78. M. Born and E. Wolf, Principles of Optics, 5th ed., Pergamon Press, Oxford, 1975.

    Google Scholar 

  79. J.R. Wait, Electromagnetic Waves in Stratified Media, Pergamon Press, New-York, 1962.

    MATH  Google Scholar 

  80. L.M. Brekhovskikh, Waves in Layered Media, Academic Press, New York, 1960.

    Google Scholar 

  81. I. Ohlidal, “Immersion Spectroscopic Reflectometry of Multilayer Systems. I. Theory,” J. Opt. Soc. Am. A, vol. 5, No.4, pp. 459–464, 1988.

    Article  Google Scholar 

  82. Y.B. Band, “Optical Bistability in Nonlinear Media: An Exact Method of Calculation,” J. Appl. Phys., vol. 56(3), pp. 656–659, 1984.

    Article  Google Scholar 

  83. F.G. Bass, and Yu. G. Gurevich, Hot electrons and strong electromagnetic waves in semiconductor plasma and in gas discharge. Nauka, Moscow, 1975 (in Russian).

    Google Scholar 

  84. O.V. Bagdasaryan and V.A. Permyakov, “Branching of conditions and effect of energy flux limitation of TE mode in medium with ionization nonlinearity.” Radiophys. Quantum Electron, vol. 21, pp. 940–947, 1978 (in Russian).

    Article  Google Scholar 

  85. J.H. Marburger and F.S. Felber, “Theory of a lossless nonlinear Fabry-Perot interferometer,” Phys. Rev. A, vol. 17, pp. 335–342, 1978.

    Article  Google Scholar 

  86. W. Chen and D.L. Mills, “ Optical response of nonlinear multilayer structures: Bilayers and superlattices,” Phys. Rev. B, vol. 36, pp. 6269–6278,1987.

    Article  Google Scholar 

  87. U. Langbein, F. Lederer, T. Peschel, and U. Trutschel, “ Nonlinear transmission resonances at stratified dielectric media,” Physics reports (Review Section of Physics Letters) vol. 194, pp. 325–342, 1990.

    Google Scholar 

  88. H.V.Baghdasaryan, A.V. Daryan, T.M. Knyazyan, and N.K. Uzunoglu, “ Modeling of Nonlinear Enhanced Performance Fabry-Perot Interferometer Filter,” Microwave Opt. Technol. Lett., vol. 14, No.2, pp. 105–108, 1997.

    Article  Google Scholar 

  89. A. Yariv and M. Nakamura, “Periodic Structures for Integrated Optics,” J. Quantum Electron., vol. QE-13, No.4, pp. 233–253, 1977.

    Article  Google Scholar 

  90. H.V. Baghdasaryan, G.G. Karapetyan, T.M. Knyazyan, S.I. Avagyan, and N.K. Uzunoglu, “Computer Modelling of a Fiber Bragg Grating-Amplifier,” COST 240 Workshop SOA-based Components for Optical Networks, Prague, Oct. 27-28, 1997, Book of abstracts, pp. 18-1-18-3, 1997.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pregla, R., von Reden, W., Hoekstra, H.J.W.M., Baghdasaryan, H.V. (1999). Beam propagation methods. In: Guekos, G. (eds) Photonic Devices for Telecommunications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59889-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59889-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64168-8

  • Online ISBN: 978-3-642-59889-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics