Skip to main content

Cytochrome c Oxidase and Mitochondrial Pathology

  • Chapter
Book cover Mitochondrial Diseases

Abstract

On the basis of studies undertaken by MacMunn at the end of the last century, in 1924, Warburg introduced the term “Atmungsferment” to define the enzyme activity linked to cellular respiration. Simultaneously, Keilin, using spectral analysis, put forward a series of cell pigments that he named cytochromes. He had discovered the respiratory chain. In 1938, he showed that the bands associated with cytochrome a3 were equivalent to Warburg’s “Atmungsferment” (review: Margoliash 1988). Since then, the main difficulty in understanding the mechanisms generating energy in the presence of oxygen was due to the insertion of the respiratory chain complexes, including cytochrome c oxidase (COX), inside the mitochondrial membrane. In 1961, Mitchell pro posed the chemiosmotic theory according to which the membrane is an essential component which permits the establishment of a charge separation during electron transfer. This creates a proton electrochemical potential difference between the two faces of the inner membrane. The energy of this gradient can then be used by mitochondrial ATPase-ATP synthase, embedded in the same membrane, to synthesize ATP from ADP and phosphate. In 1977, Wikström’s group studies suggested that the reduction of oxygen to water, catalyzed by COX, is accompanied by proton transfer across the membrane. These hypotheses have now been demonstrated (review: Capaldi 1990). COX, ferrocytochrome c: oxygen oxidoreductase, also called complex IV (EC 1.9.3.1) is embedded in the mitochondrial inner membrane and catalyzes the final oxidation in the respiratory chain.

Due to space limitation, the authors apologize for not being able to cite all the original articles where the discoveries were described. More often than not, references are limited to reviews where the reader can find the citations of the original work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams PL, Lightowlers RN, Turnbull DM (1997) Molecular analysis of cytochrome c oxidase deficiency in Leigh’s syndrome. Ann Neurol 41:268–270

    Article  PubMed  CAS  Google Scholar 

  • Adelroth P, Gennis KB, Brzezinski P (1998) Role of the pathway through K(I-362) in proton transfer in cytochrome c oxidase from R. sphaeroides. Biochemistry 27:2470–2476

    Article  Google Scholar 

  • Anderson S, Bankier AT, Barrell BG, de Bruijn MHL, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJH, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465

    Article  PubMed  CAS  Google Scholar 

  • Anthony G, Reimann A, Kadenbach B (1993) Tissue specific regulation of bovine heart cytochrome c oxidase activity by ADP via interaction with subunit Via. Proc Natl Acad Sci USA 90:1652–1656

    Article  PubMed  CAS  Google Scholar 

  • Arnold S, Goglia F, Kadenbach B (1998) 3,5-Diiodothyronine binds to subunit Va of cytochrome c oxidase and abolishes the allosteric inhibition of respiration by ATP. Eur J Biochem 252:325–330

    Article  PubMed  CAS  Google Scholar 

  • Bachman NJ, Yang TL, Dasen JS, Ernst RE, Lomax MI (1996) Phylogenetic footprinting of the human cytochrome c oxidase subunit Vb promoter. Arch Biochem Biophys 333:152–162

    Article  PubMed  CAS  Google Scholar 

  • Bachman NJ, Riggs PK, Siddiqui N, Makris GJ, Womack JE, Lomax MI (1997) Structure of the human gene (COX6A2) for the heart/muscle isoform of cytochrome c oxidase subunit Via and its chromosomal location in humans, mice and cattle. Genomics 42:146–151

    Article  PubMed  CAS  Google Scholar 

  • Bonnefoy N, Chalvet F, Hamel P, Slonimski PP, Dujardin G (1994) OXA1, a Saccharomyces cerevisiae nuclear gene whose sequence is conserved from prokaryotes to eukaryotes controls cytochrome oxidase biogenesis. J Mol Biol 239:201–212

    Article  PubMed  CAS  Google Scholar 

  • Capaldi RA (1990) Structure and function of cytochrome c oxidase. Annu Rev Biochem 59:569–596

    Article  PubMed  CAS  Google Scholar 

  • Capaldi RA, Marusich MF, Taanman JW (1995) Mammalian cytochrome c oxidase: characterization of enzyme and immunological detection of subunits in tissue extracts and whole cells. Methods Enzymol 260:117–132

    Article  PubMed  CAS  Google Scholar 

  • Cortopassi GA, Shibata D, Soon NW, Arnheim N (1992) A pattern of accumulation of a somatic deletion of mitochondrial DNA in aging human tissues. Proc Natl Acad Sci USA 89:7370–7374

    Article  PubMed  CAS  Google Scholar 

  • Di Mauro S, Lombes A, Nakase H, Mita S, Fabrizi GM, Tritschler HJ, Bonilla E, Miranda AF, De Vivo DC, Schon EA (1990) Cytochrome c oxidase deficiency. Pediatr Res 28:526–541

    Google Scholar 

  • Ewart G, Lightowlers R, Zhang YZ, Balan VJ, Kennaway N, Capaldi RA (1990) Tissue specificity and defects in human cytochrome c oxidase. Biochim Biophys Acta 1018:223–224

    Article  PubMed  CAS  Google Scholar 

  • Gattermann N, Retzlaff S, Wang YL, Hofhaus G, Heinisch J, Aul C, Schneider W (1997) Heteroplasmic point mutations of mitochondrial DNA affecting subunit I of cytochrome c oxidase in two patients with acquired idiopathic sideroblastic anemia. Blood 90:4961–4972

    PubMed  CAS  Google Scholar 

  • Grossman LI, Lomax MI (1997) Nuclear genes for cytochrome oxidase. Biochim Biophys Acta 1352:174–192

    PubMed  CAS  Google Scholar 

  • Hayashi JI, Ohta S, Kagawa Y, Kondo H, Kaneda H, Yonekawa H, Takai D, Miyabayashi S (1994) Nuclear but not mitochondrial genome involvement in human age-related mitochondrial dysfunction. J Biol Chem 269:6878–6883

    PubMed  CAS  Google Scholar 

  • Hell K, Herrmann J, Pratje E, Neupert W, Stuart RA (1997) Oxapl mediates the export of the N-and C-termini of pCOXII from the mitochondrial matrix to the intermembrane space. FEBS Lett 418:367–370

    Article  PubMed  CAS  Google Scholar 

  • Iwata S, Ostermeier C, Ludwig B, Michel H (1995) Structure at 2.8 Å resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature 376:660–669

    Article  PubMed  CAS  Google Scholar 

  • Kadenbach B, Barth J, Akgün R, Freund R, Linder D, Possekel S (1995) Regulation of mitochondrial energy generation in health and disease. Biochim Biophys Acta 1271:103–109

    PubMed  Google Scholar 

  • Kannt A, Roy C, Lancaster D, Michel H (1998) The coupling of electron transfer and proton translocation: electrostatic calculations on Paracoccus denitrificans cytochrome c oxidase. Biophys J 74:708–721

    Article  PubMed  CAS  Google Scholar 

  • Keightley JA, Hoffbuhr KC, Burton MD, Salas VM, Johnston WSW, Penn AMW, Buist NRM, Kennaway NG (1996) A microdeletion in cytochrome c oxidase (COX) subunit III associated with COX deficiency and recurrent myoglobinuria. Nat Genet 12:410–416

    Article  PubMed  CAS  Google Scholar 

  • Manfredi G, Schon EA, Moraes CT, Bonilla E, Berry GT, Sladky JT, Di Mauro S (1995) A new mutation associated with MELAS is located in a mitochondrial DNA polypeptide-coding gene. Neuromuscul Disord 5:391–398

    Article  PubMed  CAS  Google Scholar 

  • Margoliash E (1988) A prepared mind, infinite pains and genius. In: King TE, Mason HS, Morrison M (eds) Oxidases and related redox systems. Prog Clin Biol Res 274. Alan R Liss, New York, pp 79–84

    Google Scholar 

  • Merante F, Duncan AM, Mitchell G, Duff C, Rommens J, Robinson BH (1997) Chromosomal localization of the human liver form cytochrome c oxidase subunit Vila gene. Genome 40:318–324

    Article  PubMed  CAS  Google Scholar 

  • Merle P, Kadenbach B (1982) Kinetic and structural differences between cytochrome oxidases from beef liver and heart. Eur J Biochem 125:239–244

    Article  PubMed  CAS  Google Scholar 

  • Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism. Nature 191:144–148

    Article  PubMed  CAS  Google Scholar 

  • Pfanner N, Craig EA, Meijer M (1994) The protein import machinery of the mitochondrial inner membrane. Trends Biochem Sci 19:368–372

    Article  PubMed  CAS  Google Scholar 

  • Poyton RO, McEwen JE (1996) Crosstalk between nuclear and mitochondrial genomes. Annu Rev Biochem 65:563–607

    Article  PubMed  CAS  Google Scholar 

  • Preiss T, Sang AE, Chranowska-Lightowlers ZM, Lightowlers RN (1995) The mRNA-binding protein COLBP is glutamate dehydrogenase. FEBS Lett 367:291–296

    Article  PubMed  CAS  Google Scholar 

  • Prieur B, Bismuth J, Délavai E (1998) Effects of adrenal steroid hormones on mitochondrial maturation during the late fetal period. Eur J Biochem 252:194–199

    Article  PubMed  CAS  Google Scholar 

  • Sadlock JE, Lightowlers RN, Capaldi RA, Schon EA (1993) Isolation of a cDNA specifying subunit Vllb of human cytochrome c oxidase. Biochim Biophys Acta 1172:223–225

    PubMed  CAS  Google Scholar 

  • Scarpulla RC (1997) Nuclear control of respiratory chain expression in mammalian cells. J Bionerg Biomembr 29:109–119

    Article  CAS  Google Scholar 

  • Schägger H, Noack H, Halangk W, Brandt U, Von Jagow G (1995) Cytochrome c-oxidase in developing rat heart: enzymic properties and amino-terminal sequences suggest identity of the fetal heart and the adult liver isoform. Eur J Biochem 230:235–241

    Article  PubMed  Google Scholar 

  • Shoffner JM, Wallace DC (1995) Oxidative phosphorylation disease. In: Scriver CTR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular basis of inherited disease, 7th edn. MacGraw-Hill, New York, pp 1535–1609

    Google Scholar 

  • Speno H, Taheri MR, Sieburth D, Martin CT (1995) Identification of essential amino acids within the proposed CuA site in subunit II of cytochrome c oxidase. J Biol Chem 270:25363–25369

    Article  PubMed  CAS  Google Scholar 

  • Taanman JW (1997) Human cytochrome c oxidase: structure function and deficiency. J Bioenerg Biomembr 29:151–163

    Article  PubMed  CAS  Google Scholar 

  • Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, Yaono R, Yoshikawa S (1995) Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 Å. Science 269:1069–1074

    Article  PubMed  CAS  Google Scholar 

  • Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, Yaono R, Yoshikawa S (1996) The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 Å. Science 272:1136–1144

    Article  PubMed  CAS  Google Scholar 

  • Wallace DC, Lott MT, Brown MD, Huoponen K, Torroni A (1995) Report of the committee on human mitochondrial DNA. in: Cuticchia AJ (ed) Human gene mapping 1995: a compendium. Johns Hopkins University Press, Baltimore, pp 910–954 (or http://www.gen.emory.edu/mito-map.html)

    Google Scholar 

  • Witt H, Malatesta F, Nicoletti F, Brunori M, Ludwig B (1998) Tryptophan 121 of subunit II is the electron entry site to cytochrome c oxidase in Paracoccus denitrificans. Involvement of a hydrophobic patch in the docking reaction. J Biol Chem 273:5132–5136

    Article  PubMed  CAS  Google Scholar 

  • Wolz W, Kress W, Mueller CR (1997) Genomic sequence and organization of the human gene for cytochrome c oxidase subunit (COX7A1) VIIa-M. Genomics 45:438–442

    Article  PubMed  CAS  Google Scholar 

  • Yoshikawa S (1997) Beef heart cytochrome c oxidase. Curr Opin Struct Biol 7:574–579

    Article  PubMed  CAS  Google Scholar 

  • Zhu Z, Yao J, Johns T, Fu K, De Bie I, MacMillan C, Cuthbert AP, Newbold RF, Wang JC, Chevrette M, Brown GK, Brown RM and Shoubridge EA (1998) SURF-1, encoding a factor involved in the biogenesis of cytochrome c oxidase, is mutated in Leigh syndrome. Nat Genet 20:337–343

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Poyau, A., Godinot, C. (1999). Cytochrome c Oxidase and Mitochondrial Pathology. In: Lestienne, P. (eds) Mitochondrial Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59884-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59884-5_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64166-4

  • Online ISBN: 978-3-642-59884-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics