Skip to main content

The Control of Ageing and Mitochondria

  • Chapter
  • 139 Accesses

Abstract

By their central role in energetic metabolism and in nucleotide biosynthesis, mitochondria appear to play an important role in cell degeneration and ageing, primarily due to a reduction of the production of ATP, a universal energetic compound which also controls reactions such as the phosphorylation of proteins, which plays an important function in cell regulation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adelman R, Saul RL, Ames B (1988) Oxidative damage to DNA: relation to specific metabolic rate and life span. Proc Natl Acad Sci USA 85:2706–2708

    Article  PubMed  CAS  Google Scholar 

  • Agarwal S, Sohal RS (1994) DNA oxidative damage and life expectancy in houseflies. Proc Natl Acad Sci USA 91:12332–12335

    Article  PubMed  CAS  Google Scholar 

  • Anderson CT, Friedberg EC (1980) The presence of nuclear and mitochondrial uracyl-glycosylases in extracts of human KB cells. Nucleic Acids Res 8:875–877

    Article  PubMed  CAS  Google Scholar 

  • Baumer A, Zhang C, Linnane AW, Nagley P (1994) Age-related human mitochondrial DNA deletions: a heterogeneous set of deletions arising at a single pair of directly repeated sequences. Am J Hum Genet 54:618–630

    PubMed  CAS  Google Scholar 

  • Blass JP, Baker AL, Ko L, Black RS (1990) Induction of Alzheimer antigens by an uncoupler of oxidative phosphorylation. Arch Neurol 47:864–869

    PubMed  CAS  Google Scholar 

  • Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu C-P, Morin GB, Harley CB, Shay JW, Lichtsteiner S, Wright WE (1998) Extension of life-span by introduction of telomerase into normal human cells. Science 279:349–352

    Article  PubMed  CAS  Google Scholar 

  • Brossas J Y, Barreau E, Courtois Y, Tréton J (1994) Multiple deletions in mitochondrial DNA are present in senescent mouse brain. Biochem Biophys Res Commun 202:654–659

    Article  PubMed  CAS  Google Scholar 

  • Caradonna S, Ladner R, Hansburt M, Kosciuk M, Lynch F, Muller S (1996) Affinity purification and comparative analysis of two distinct human uracil-DNA glycosylases. Exp Cell Res 222:345–359

    Article  PubMed  CAS  Google Scholar 

  • Clayton D, Doda JN, Friedberg EC (1974) The absence of a pyridmidine dimer repair in mammalian mitochondria. Proc Natl Acad Sci USA 71:2778–2781

    Article  Google Scholar 

  • Corral-Debrinski M, Horton T, Lott M, Shoffner JM, Flint BM, Wallace DC (1992) Mitochondrial DNA deletions in human brain: regional variability and increase with advanced age. Nat Genet 2:324–329

    Article  PubMed  CAS  Google Scholar 

  • Cortopassi G A, Arnheim N (1990) Detection of a specific mitochondrial DNA deletion in tissues of older humans. Nucleic Acids Res 18:6927–6933

    Article  PubMed  CAS  Google Scholar 

  • Cortopassi GA, Shibota D, Soon NW, Arnheim N (1992) A pattern of accumulation of somatic deletions of mitochondrial DNA in aging human tissues. Proc Natl Acad Sci USA 89:7370–7373

    Article  PubMed  CAS  Google Scholar 

  • Davis RE, Miller S, Herrntadt C, Ghosh SS, Fahy E, Shinobu LA, Galasko D, Thal LJ, Beal MF, Howell N, Parker WD (1997) Mutations in mitochondrial cytochrome c oxidase genes segregate with late-onset Alzheimer disease. Proc Natl Acad Sci USA 94:4526–4531

    Article  PubMed  CAS  Google Scholar 

  • Day BJ, Shawen S, Liochev SI, Crapo JD (1995) A metalloporphyrin superoxide dismutase mimetic protects against paraquat-induced endothelial cell injury, in vitro. J Pharmacol Exp Ther 275:1227–1232

    PubMed  CAS  Google Scholar 

  • Drigger W, Ledoux S, Wilson GL (1993) Repair of oxidative damage within the mitochondrial DNA of RINr 38 cells. J Biol Chem 268:22042–22045

    Google Scholar 

  • Fahn H-J, Wang L-S, Hsieh R-H, Chang S-C, Kao S-H, Huang M-H, Wei Y-H (1996) Age related 4977 bp deletion in human lung mitochondrial DNA. Am J Respir Crit Care Med 154:1141–1145

    PubMed  CAS  Google Scholar 

  • Finch CE, Tanzi RE (1997) Genetics of aging. Science 278:407–411

    Article  PubMed  CAS  Google Scholar 

  • Gadaleta MN, Rainaldi G, Lezza AMS, Milella F, Fracasso F, Cantatore P (1992) Mitochondria DNA copy number and mitochondrial DNA deletion in adult and senescent rat. Mutat Res 275:181–193

    PubMed  CAS  Google Scholar 

  • Gupta PK, Sirover M (1981) Stimulation of the nuclear uracyl DNA glycosylase in human fibroblasts. Cancer Res 41:3133–3136

    PubMed  CAS  Google Scholar 

  • Gutteridge JMC (1992) Ageing and free radicals. Med Lab Sci 49:313–319

    PubMed  CAS  Google Scholar 

  • Haas RH, Bchir MB, Nasirian F, Nakano K, Ward D, Pay M, Hill R, Shults CW (1995) Low platelet mitochondrial complex I and complex II and III activities in early untreated Parkinson’s disease. Ann Neurol 37:714–722

    Article  PubMed  CAS  Google Scholar 

  • Harley CB, Futcher AB, Greider CW (1990) Telomeres shorten during ageing of human fibroblasts. Nature 345:458–460

    Article  PubMed  CAS  Google Scholar 

  • Harman D (1994) “Aging”: prospects for the further increase in the functional life span. Age 17:119–146

    Article  CAS  Google Scholar 

  • Hayakawa M, Hattori K, Sugiyama S, Ozawa AT (1992) Age associated oxygen damage and mutations in mitochondrial DNA of human hearts. Biochem Biophys Res Commun 189:979–985

    Article  PubMed  CAS  Google Scholar 

  • Hayakawa M, Katsumata K, Yoneda M, Tanaka M, Sugiyama S, Ozawa T (1996) Age-related extensive fragmentation of mitochondrial DNA into minicircles. Biochem Biophys Res Commun 226:369–377

    Article  PubMed  CAS  Google Scholar 

  • Hayashi JI, Ohta S, Kagawa Y, Kondo H, Kaneda H, Yonekawa H, Takai D, Miyabayashi S (1994) Nuclear but not mitochondrial genome involvement in human age-related mitochondrial dysfunction. J Biol Chem 269:6878–6883

    PubMed  CAS  Google Scholar 

  • Hegler J, Bittner D, Boiteux S, Epe B (1993) Quantification of oxidative DNA modifications in mitochondria. Carcinogenesis 14:2309–2312

    Article  PubMed  CAS  Google Scholar 

  • Hirano M, Shtilbans A, Mayeux R, Davidson MM, DiMauro S, Knowles JA, Schon EA (1997) Apparent mtDNA heteroplasmy in Alzheimer’s disease patients and in normals due to PCR amplification of nucleus-embedded mtDNA pseudgenes. Proc Natl Acad Sci USA 94: 14894–14899

    Article  PubMed  CAS  Google Scholar 

  • Hutchin T, Cortopassi GA (1995) Mitochondrial DNA clone associated with increased risk for Alzheimer disease. Proc Natl Acad Sci USA 92:6892–6895

    Article  PubMed  CAS  Google Scholar 

  • Imlay J, Linn S (1988) DNA damage and oxygen radical toxicity. Science 240:1302–1309 Jazwinski SM (1996) Longevity genes and aging. Science 273:54–59

    Google Scholar 

  • Kuchino Y, Mori F, Kasai H, Inou H, Iwai S, Miura K, Ohtsuka E, Nishimura S (1987) Misreading of DNA template containing 8-hydroxydeoxyguanosine at the modified bases and at adjacent residues. Nature 327:77–79

    Article  PubMed  CAS  Google Scholar 

  • Laderman KA, Penny JR, Mazzucchelli F, Bresolin N, Scarlato G, Attardi G (1996) Aging-dependent functional alterations of mitochondrial DNA (mtDNA) from human fibroblasts transferred into mtDNA-less cells. J Biol Chem 271:15891–15897

    Article  PubMed  CAS  Google Scholar 

  • Lee H-C, Pang C-Y, Hsu H-S, Wei Y-H (1994) Ageing-associated tandem duplication in the Dloop of mitochondrial DNA of human muscle. FEBS Lett 354:79–83

    Article  PubMed  CAS  Google Scholar 

  • Lestienne P, Nelson I, Riederer P, Jillinger K, Reichmann H (1990) Normal mitochondrial genome in brain from patients with Parkinson’s disease and complex I defect. J Neurochem 55:1810–1812

    Article  PubMed  CAS  Google Scholar 

  • Lestienne P, Nelson I, Riederer P, Jillinger K, Reichmann H (1991) Mitochondrial DNA in postmortem brain from patients with Parkinson’s disease. J Neurochem 56:1819

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Huang T-T, Carlson EJ, Melov S, Ursell PC, Olson JL, Noble LJ, Yoshimura MP, Berger C, Chan PH, Wallace DC, Epstein CJ (1995) Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet 11:376–381

    Article  PubMed  CAS  Google Scholar 

  • Melov S, Hertz GZ, Stormo G, Johnson TE (1994) Detection of deletions in the mitochondrial genome of caenorhabditis elegans. Nucleic Acids Res 22:1075–1078

    Article  PubMed  CAS  Google Scholar 

  • Melov S, Hinerfeld D, Esposito L, Wallace DC (1997) Multi-organ characterization of mitochondrial rearrangements in ad libidum and caloric restricted mice show striking somatic mitochondrial rearrangements with age. Nucleic Acids Res 25:974–982

    Article  PubMed  CAS  Google Scholar 

  • Melov S, Schneider JA, Day BJ, Hinerfeld D, Coskun P, Mirra SS, Crapo JD, Wallace DC (1998) A novel neurological phenotype in mice lacking mitochondrial manganese superoxide dismutase. Nat Genet 18:159–163

    Article  PubMed  CAS  Google Scholar 

  • Mizumo Y, Ohta S, Tanaka M, Takamiya S, Suzuki K, Sato T, Oya H, Ozawa T, Kagawa Y (1989) Deficiencies in complex I subunits of the respiratory chain in Parkinson’s disease. Biochem Biophys Res Commun 163:1450–1455

    Article  Google Scholar 

  • Moriya M, Grollman AP (1993) Mutation in the mut gene of Escherichia coli enhance the frequency of targeted GC → TA transversions induced by a single 8-oxoguanine residue in single-stranded DNA. Mol Gen Genet 239:72–76

    PubMed  CAS  Google Scholar 

  • Oexel K, Zwirner A (1997) Advanced telomere shortening in respiratory chain disorders. Hum Mol Genet 6:905–908

    Article  Google Scholar 

  • Orr WC, Sohal RS (1994) Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science 263:1128–1130

    Article  PubMed  CAS  Google Scholar 

  • Park JW, Ames B (1988) 7-Methylguanine adducts in DNA are normally present in high levels and increase on aging: analysis by HPLC with electrochemical detection. Proc Natl Acad Sci USA 85:7467–7470

    Article  PubMed  CAS  Google Scholar 

  • Pikö L, Hougham AJ, Bulpitt KJ (1988) Studies of sequence heterogeneity of mitochondrial DNA from rat and mouse tissues: evidence for an increased frequency of deletions/additions with aging. Mech Ageing Dev 43:279–293

    Article  PubMed  Google Scholar 

  • Powell JR, Caccone A, Amato GD, Yoon C (1986) Rates of nucleotide substitution in Drosophila mitochondrial DNA and nuclear DNA are similar. Proc Natl Acad Sci USA 83:9090–9093

    Article  PubMed  CAS  Google Scholar 

  • Prakash L (1975) Repair of pyrimidine dimers in nuclear and mitochondrial DNA of yeast irradiated with low doses of ultraviolet light. J Mol Biol 98:781–795

    Article  PubMed  CAS  Google Scholar 

  • Prowse KR, Greider CW (1995) Developmental and tissue-specific regulation of mouse telomerase and telomere length. Proc Natl Acad Sci USA 92:4818–4822

    Article  PubMed  CAS  Google Scholar 

  • Richter C, Park JW, Ames B (1988) Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc Natl Acad Sci USA 85:6465–6467

    Article  PubMed  CAS  Google Scholar 

  • Shapira AHV, Cooper JM, Dexter D, Clark JB, Jenner P, Marsden CD (1990) Mitochondrial complex I deficiency in Parkinson’s disease. J Neurochem 54:823–827

    Article  Google Scholar 

  • Shoffner JM, Brown MD, Torroni A, Lott MT, Cabell MF, Mirra SS, Beal MF, Yang C-C, Gearing M, Savo R, Watts RL, Juncos JL, Hansen LA, Crain BJ, Fayad M, Reckord CL, Wallace DC (1993) Mitochondrial DNA variants observed in Alzheimer disease and Parkinson disease patients. Genomics 17:171–184

    Article  PubMed  CAS  Google Scholar 

  • Smith JR, Pereira-Smith O (1996) Replicative senescence: implication for in vivo aging and tumor suppression. Science 273:63–67

    Article  PubMed  CAS  Google Scholar 

  • Sohal RS, Weindruch R (1996) Oxidative stress, caloric restriction, and aging. Science. 273:59–63

    Article  PubMed  CAS  Google Scholar 

  • Soon NW, Hinton DR, Cortopassi G, Arnheim N (1992) Mosaicism for a specific somatic mitochondrial DNA mutation in adult brain. Nat Genet 2:318–323

    Article  Google Scholar 

  • Suganuma N, Itagawa T, Nawa A, Tomoda Y (1993) Human ovarian aging and mitochondrial DNA deletion. Horm Res 39 (Suppl 1):16–21

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama S, Hattori K, Hayakawa M, Ozawa T (1991) Quantitative analysis of age-associated accumulation of mitochondrial DNA deletions in human hearts. Biochem Biophys Res Commun 180:894–899

    Article  PubMed  CAS  Google Scholar 

  • Tanaka M, Gong J-S, Zhang J, Yoneda M, Yagi K (1998) Mitochondrial genotype associated with longevity. Lancet 351:185–186

    Article  PubMed  CAS  Google Scholar 

  • Tanhauser SM, Laipis PJ (1995) Multiple deletions are detectable in mitochondrial DNA of aging mice. J Biol Chem 270:24769–24775

    Article  PubMed  CAS  Google Scholar 

  • Tomkinson AE, Bonk RT, Kim J, Barfeld N, Linn S (1990) Mammalian mitochondrial endonuclease activities specific for ultraviolet-irradiated DNA. Nucleic Acids Res 18:929–935

    Article  PubMed  CAS  Google Scholar 

  • Trounce I, Byrne E, Marzuki S (1989) Decline in skeletal muscle mitochondrial respiratory chain function: possible factor in aging. Lancet 1:637–639

    Article  PubMed  CAS  Google Scholar 

  • Vauwter L, Brown WM (1986) Nuclear and mitochondrial DNA comparisons reveal extreme rate variation in the molecular clock. Science 234:194–196

    Article  Google Scholar 

  • Wallace DC, Stugard C, Murdock D, Schurr T, Brown MD (1997) Ancient mtDNA sequences in the human nuclear genome, a potential source of errors in identifying pathogenic mutations. Proc Natl Acad Sci USA 94:14900–14905

    Article  PubMed  CAS  Google Scholar 

  • Yang JH, Lee H-C, Lin KJ, Wei Y-HA (1994) Specific 4977 bp deletion of mitochondrial DNA in human aging skin. Arch Dermatol Res 286:386–390

    Article  PubMed  CAS  Google Scholar 

  • Yu C-E, Oshima J, Fu Y-H, Wijsman EM, Hisama F, Alisch R, Matthews S, Nakura J, Miki T, Ouais S, Martin GM, Mulligan J, Schellenberg GC (1996) Positional cloning of Werner’s syndrome gene. Science 272:258–262

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lestienne, P., Veziers, J. (1999). The Control of Ageing and Mitochondria. In: Lestienne, P. (eds) Mitochondrial Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59884-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59884-5_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64166-4

  • Online ISBN: 978-3-642-59884-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics