Skip to main content

The Normal and Pathological Structure, Function and Expression of Mitochondrial Creatine Kinase

  • Chapter
Mitochondrial Diseases
  • 137 Accesses

Abstract

Creatine kinase (CK) isoenzymes are expressed in tissues with important and rapid energy requirements. These enzymes catalyse the reversible phosphorylation of creatine by ATP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams V, Bosch W, Schlegel J, Wallimann T, Brdiczka D (1989) Further characterization of contact sites from mitochondria of different tissues: topology of peripheral kinases. Biochim Biophys Acta 981:213–225

    Article  PubMed  CAS  Google Scholar 

  • Apple FS, Rogers MA (1986) Mitochondrial creatine kinase activity alterations in skeletal muscle during long-distance running. J Appl Physiol 61:482–485

    PubMed  CAS  Google Scholar 

  • Babbitt PC, Kenyon GL, Kuntz ID, Cohen FE, Baxter JD, Benfield PA, Buskin JD, Gilbert WA, Hauschka SD, Hossle JP, Ordahl CH, Pearson M, Perriard JC, Pickering LA, Putney SD, West BL, Ziven RA (1986) Comparisons of creatine kinase primary structures. J Protein Chem 5:1–14

    Article  CAS  Google Scholar 

  • Baggetto LG, Clottes E, Vial C (1992) Low mitochondrial proton leak due to high membrane cholesterol content and cytosolic creatine kinase as 2 features of the deviant bioenergetics of Ehrlich and AS30-D tumor cells. Cancer Res 52:4935–4941

    PubMed  CAS  Google Scholar 

  • Bakker A, Bernaert I, Debie M, Ravingerova T, Ziegelhoffer A, Vanbelle H, Jacob W (1994) The effect of calcium on mitochondrial contact sites. A study on isolated rat hearts. Biochim Biophys Acta 1224:583–588

    Article  PubMed  Google Scholar 

  • Belitzer VA, Tsibakova ET (1939) On the mechanism of phosphorylation coupled with respiration. Biokhimiya 4:516–534

    Google Scholar 

  • Bennet VD, Hall N, DeLuca M, Suelter CH (1985) Decreased mitochondrial creatine kinase activity in dystrophic chicken breast muscle alters creatine-linked resiratory coupling. Arch Biochem Biophys 240:380–391

    Article  Google Scholar 

  • Bessman SP, Carpenter CL (1985) The creatine-creatine phosphate energy shuttle. Annu Rev Biochem 54:831–862

    Article  PubMed  CAS  Google Scholar 

  • Bessman S, Geiger PI (1981) Transport of energy in muscle: the phosphorylcreatine shuttle. Science 211:448–452

    Article  PubMed  CAS  Google Scholar 

  • Bessman S, Yang WCT, Geiger PJ, Erickson-Viitanen S (1980) Intimate coupling of creatine Phosphokinase and myofibrillar adenosinetriphosphatase. Biochem Biophys Res Commun 96:1414–1420

    Article  PubMed  CAS  Google Scholar 

  • Biermans W, Bakker A, Jacob W (1990) Contact sites between inner and outer mitochondrial membrane: a dynamic microcompartment for creatine kinase activity. Biochim Biophys Acta 1018:225–228

    Article  PubMed  CAS  Google Scholar 

  • Bittl JA, DeLayre J, Ingwall JS (1987) Rate equation for creatine kinase predicts the in vivo reaction velocity: 3IP NMR surface coil studies in brain, heart, and skeletal muscle of the living rat. Biochemistry 26:6083–6090

    Article  PubMed  CAS  Google Scholar 

  • Bouzidi MF, Enjolras N, Carrier H, Vial C, Lopez-Mediavilla C, Burt-Pichat B, Couthon F, Godinot C (1996) Variations of muscle mitochondrial creatine kinase activity in mitochondrial diseases. Biochim Biophys Acta 1316:61–70

    PubMed  Google Scholar 

  • Brdiczka D (1991) Contact sites between mitochondrial envelope membranes. Structure and function in energy-transfer and protein-transfer. Biochim Biophys Acta 1071:291–312

    PubMed  CAS  Google Scholar 

  • Brdiczka D, Kaldis P, Wallimann T (1994) In vitro complex formation between the octamer of mitochondrial creatine kinase and porin. J Biol Chem 269:27640–27644

    PubMed  CAS  Google Scholar 

  • Brooks SP J, Suelter CH (1987) Association of chicken mitochondrial creatine kinase with the inner mitochondrial membrane. Arch Biochem Biophys 253:122–132

    Article  PubMed  CAS  Google Scholar 

  • Buechter DD, Medzihradszky KF, Burlingame AL, Kenyon GL (1992) The active site of creatine kinase — affinity labelling of cysteine 282 with N-(2,3-epoxypropyl)-N-amidinoglycine. J Biol Chem 267:2173–2178

    PubMed  CAS  Google Scholar 

  • Bürger A, Richterich P, Aebi H (1964) Die Heterogenität der Kreatin-Kinase. Biochem Z 339:305–314

    PubMed  Google Scholar 

  • Ch’ng JLC, Ibrahim B (1994) Transcriptional and post-transcriptional mechanisms modulate creatine kinase expression during differentiation of osteoblastic cells. J Biol Chem 269:2336–2341

    PubMed  Google Scholar 

  • Chen LH, Borders CL, Vasquez JR, Kenyon GL (1996) Rabbit muscle creatine kinase: consequences of the mutagenesis of conserved histidine residues. Biochemistry 35:7895–7902

    Article  PubMed  CAS  Google Scholar 

  • Dawson DM, Eppenberger HM, Kaplan N (1965) Creatine kinase: evidence for a dimeric structure. Biochem Biophys Res Commun 21:346–349

    Article  PubMed  CAS  Google Scholar 

  • Dorsman JC, Van Heeswijk WC, Grivell LA (1988) Identification of two factors which bind to the upstream sequences of a number of nuclear genes coding for mitochondrial proteins and to genetic elements important for cell division in yeast cells. Nucleic Acids Res 16:7287–7301

    Article  PubMed  CAS  Google Scholar 

  • Eggleton P, Eggleton GP (1927) The physiological significance of “phosphagen”. J Physiol 63:155–161

    PubMed  CAS  Google Scholar 

  • Eppenberger-Eberhardt M, Riesinger I, Messerli M, Schwarb P, Muller M, Eppenberger HM, Wallimann T (1991) Adult rat cardiomyocytes cultured in creatine-deficient medium display large mitochondria with paracrystalline inclusions, enriched for creatine kinase. J Cell Biol 113:289–302

    Article  PubMed  CAS  Google Scholar 

  • Fiske CH, Subbarow Y (1927) The nature of the “inorganic phosphate” in voluntary muscle. Science 65:401–403

    Article  PubMed  CAS  Google Scholar 

  • Font B, Vial C, Goldschmidt D, Eichenberger D, Gautheron DC (1991) Heart mitochondrial creatine kinase solubilization effects of mitochondrial swelling and SH group reagents. Arch Biochem Biophys 212:195–203

    Article  Google Scholar 

  • Fontanet HL, Trask RV, Haas RC, Strauss AW, Abendschein DR, Billadello JJ (1991) Regulation of expression of M, B, and mitochondrial creatine kinase messenger-RNAs in the left ventricle after pressure overload in rats. Circ Res 68:1007–1012

    PubMed  CAS  Google Scholar 

  • Friedman DL, Roberts R (1994) Compartmentation of brain-type creatine kinase and ubiquitous mitochondrial creatine kinase in neurons - evidence for a creatine phosphate energy shuttle in adult rat brain. J Comp Neurol 343:500–511

    Article  PubMed  CAS  Google Scholar 

  • Fritz-Wolf K, Schnyder T, Wallimann T, Kabsch W (1996) Structure of mitochondrial creatine kinase. Nature 381:341–345

    Article  PubMed  CAS  Google Scholar 

  • Gross M, Furter-Graves EM, Wallimann T, Eppenberger HM, Furter R (1994) The tryptophan residues of mitochondrial creatine kinase: roles of Trp-223, Trp-206, and Trp-264 in activesite and quaternary structure formation. Protein Sci 3:1058–1068

    Article  PubMed  CAS  Google Scholar 

  • Grosse R, Spitzer E, Kupriyanov VV, Saks VA, Repke KRH (1980) Coordinate interplay between (Na+ + K+)-ATPase and creatine Phosphokinase optimizes (Na+/K+)-antiport across the membrane of vesicles formed from the plasma membrane of cardiac muscle cell. Biochim Biophys Acta 603:142–156

    Article  PubMed  CAS  Google Scholar 

  • Haas RC, Strauss AW (1990) Separate nuclear genes encode sarcomere-specific and ubiquitous human mitochondrial creatine kinase isoenzymes. J Biol Chem 265:6921–6927

    PubMed  CAS  Google Scholar 

  • Haas RC, Korenfeld C, Zhang Z, Perryman B, Roman D, Strauss AW (1989) Isolation and characterization of the gene and cDNA encoding human mitochondrial creatine kinase. J Biol Chem 264:2980–2987

    Google Scholar 

  • Hall N, DeLuca M (1975) Developmental changes in creatine Phosphokinase isoenzymes in neonatal mouse hearts. Biochem Biophys Res Commun 66:988–994

    Article  PubMed  CAS  Google Scholar 

  • Hall N, Addis P, DeLuca M (1979) Mitochondrial creatine kinase. Physical and kinetic properties of the purified enzyme from beef heart. Biochemistry 18:1745–1751

    Article  PubMed  CAS  Google Scholar 

  • Hanzlikova V, Schiaffino S (1977) Mitochondrial changes in ischemic skeletal muscle. J Ultrastruct Res 60:121–133

    Article  PubMed  CAS  Google Scholar 

  • Hardin CD, Raeymaekers L, Paul RJ (1992) Comparison of endogenous and exogenous sources of ATP in fueling Ca2+ uptake in smooth muscle plasma membrane vesicles. J Gen Physiol 99:21–40

    Article  PubMed  CAS  Google Scholar 

  • Hoerter JA, Kuznetsov A, Ventura-Clapier R (1991) Functional development of the creatine kinase system in perinatal rabbit heart. Circ Res 69:665–676

    PubMed  CAS  Google Scholar 

  • Ingwall JS, Atkinson DE, Clarke K, Fetters JK (1990) Energetics correlates of cardiac failure: changes in the creatine kinase system in the failing myocardium. Eur Heart J 1:108–115

    Google Scholar 

  • Jacobs H, Heldt HW, Klingenberg M (1964) High activity of creatine kinase in mitochondria from muscle and brain and evidence for a separate mitochondrial isoenzyme of creatine kinase. Biochem Biophys Res Commun 16:516–521

    Article  PubMed  CAS  Google Scholar 

  • Jacobus WE, Lehninger AL (1973) Creatine kinase of rat heart mitochondria. J Biol Chem 248:4803–4810

    PubMed  CAS  Google Scholar 

  • James GP, Harrison RL (1979) Creatine kinase isoenzymes of mitochondrial origin in human serum. Clin Chem 25:943–947

    PubMed  CAS  Google Scholar 

  • James P, Wyss M, Lutsenko S, Wallimann T, Carafoli E (1990) ATP binding site of mitochondrial creatine kinase affinity labelling of Asp-335 with CIRATP. FEBS Lett 273:139–143

    Article  PubMed  CAS  Google Scholar 

  • Kaldis P, Furter R, Wallimann T (1994) The N-terminal heptapeptide of mitochondrial creatine kinase is important for octamerization. Biochemistry 33:952–959

    Article  PubMed  CAS  Google Scholar 

  • Kanemitsu F, Kawanishi I, Mizushima J (1982) The origin of a cathode-migrating creatine kinase found in serum from a cancer patient. Clin Chim Acta 122:377–383

    Article  PubMed  CAS  Google Scholar 

  • Kanemitsu F, Kawanishi I, Mizushima J, Okigaki T (1984) Mitochondrial creatine kinase as a tumor-associated marker. Clin Chim Acta 138:175–183

    Article  PubMed  CAS  Google Scholar 

  • Kanemitsu F, Kawanishi I, Mizushima JA (1983) New creatine kinase found in mitochondrial extracts from malignant liver tissue. Clin Chim Acta 128:233–240

    Article  PubMed  CAS  Google Scholar 

  • Klein SC, Haas RC, Perryman MB, Billadello JJ, Strauss AW (1991) Regulatory element analysis and structural characterization of the human sarcomeric mitochondrial creatine kinase gene. J Biol Chem 266:18058–18065

    PubMed  CAS  Google Scholar 

  • Korge P, Campbell KB (1994) Local ATP regeneration is important for sarcoplasmic reticulum Ca2+ pump function. Am J Physiol 267:C357–C366

    PubMed  CAS  Google Scholar 

  • Kottke M, Adams V, Wallimann T, Nalam VK, Brdiczka D (1991) Location and regulation of octameric mitochondrial creatine kinase in the contact sites. Biochim Biophys Acta 1061:215–225

    Article  PubMed  CAS  Google Scholar 

  • Kuznetsov AV, Saks VA (1986) Affinity modification of creatine kinase and ATP-ADP translocase in heart mitochondria: determination of their molar stoichiometry. Biochem Biophys Res Commun 134:359–366

    Article  PubMed  CAS  Google Scholar 

  • Lee KN, Csako G, Bernhardt P, Elin RJ (1994) Relevance of macro creatine kinase type 1 and type 2 isoenzymes to laboratory and clinical data. Clin Chem 40:1278–1283

    PubMed  CAS  Google Scholar 

  • Lewis W, Dalakas MC (1995) Mitochondrial toxicity of antiviral drugs. Nat Med 1:417–422

    Article  PubMed  CAS  Google Scholar 

  • Leydier C, Andersen J, Couthon F, Forest E, Denoroy L, Vial C, Clottes E (1997) Proteinase K processing of rabbit muscle creatine kinase. J Protein Chem 16:67–74

    Article  PubMed  CAS  Google Scholar 

  • Lin LJ, Perryman MB, Friedman D, Roberts R, Ma TS (1994) Determination of the catalytic site of creatine kinase by site-directed mutagenesis. Biochim Biophys Acta 1206:97–104

    Article  PubMed  CAS  Google Scholar 

  • Lipskaya TYU, Rybina IV (1987) Properties of mitochondrial creatine kinase from skeletal muscle. Biokhimiya 52:594–603

    Google Scholar 

  • Lipskaya T, Temple VD, Belousova LV, Molokova EV, Rybina IV (1981) Investigation of the interaction of mitochondrial creatine kinase with the membranes of the mitochondria. Biochemistry USSR 45:877–886

    Google Scholar 

  • Lipskaya TYU, Kedishvili NY, Kalenova ME (1986) Conditions of interconversion of oligomeric forms of heart mitochondrial creatine kinase. Biokhimiya 50:1339–1348

    Google Scholar 

  • Lohman K (1934) Über die enzymatische Aufspaltung der Kreatinphosphorsäure. Biochem Z 271:264–277

    Google Scholar 

  • Mahler M (1979)Progressive loss of mitochondrial creatine Phosphokinase activity in muscular dystrophy. Biochem Biophys Res Commun 88:895–906

    Article  PubMed  CAS  Google Scholar 

  • Mahowald TA (1969) Identification of an ε-NH2 group of lysine and a SH group of cysteine near the reactive cysteine residue in rabbit muscle creatine kinase. Fed Proc 28:601

    Google Scholar 

  • Manos P, Bryan GK (1993) Cellular and subcellular compartmentation of creatine kinase in brain. Dev Neurol 15:271–279

    Article  CAS  Google Scholar 

  • Marcillat O, Goldschmidt D, Eichenberger D, Vial C (1987) Only one of the two interconvertible forms of mitochondrial creatine kinase binds to heart mitoplasts. Biochim Biophys Acta 890:233–241

    Article  PubMed  CAS  Google Scholar 

  • Martin KJ, Chen SF, Clark GM, Degen D, Wajima M, Vonhoff DD, Kaddurah-Daouk R (1994) Evaluation of creatine analogues as a new class of anticancer agents using freshly explanted human tumor cells. J Natl Cancer Inst 86:608–613

    Article  PubMed  CAS  Google Scholar 

  • McBride OW, Battey J, Hollis GF, Swan DC, Siebenlost U, Leder P (1982) Localization of human variable and constant region immunoglobulin heavy chain genes on subtelomeric band q32 of chromosome 14. Nucleic Acids Res 10:8155–8170

    Article  PubMed  CAS  Google Scholar 

  • Morris GE, Cartwright AJ (1990) Monoclonal antibody studies suggest a catalytic site at the interface between domains in creatine kinase. Biochim Biophys Acta 1039:318–322

    Article  PubMed  CAS  Google Scholar 

  • Mühlebach SM, Gross M, Wirz T, Wallimann T, Perriard JC, Wyss M (1994) Sequence homology and structure prodictions of the creatine kinase isoenzymes. Mol Cell Biochem 133:245–262

    Article  PubMed  Google Scholar 

  • Nicolay K, Rojo M, Wallimann T, Demel R, Hovius R (1990) The role of contact sites between inner and outer mitochondrial membrane in energy transfer. Biochim Biophys Acta 1018:229–233

    Article  PubMed  CAS  Google Scholar 

  • Nigro JM, Schweinfest CW, Rajkovic A, Pavlovic J, Jamal S, Dottin RP, Hart JT, Kamarck ME, Rae PMM, Carty MD, Martin Deleon P (1987) cDNA cloning and mapping of the human creatine kinase M gene to 19ql3. Am J Hum Genet 40:115–125

    PubMed  CAS  Google Scholar 

  • Norwood WI, Ingwall JS, Norwood CR, Fossel ET (1983) Developmental changes of creatine kinase metabolism in rat brain. Am J Physiol 244:C205–C210

    PubMed  CAS  Google Scholar 

  • Ohira Y, Kanzaki M, Chen CS (1988) Intramitochondrial inclusions caused by depletion of creatine kinase in rat skeletal muscles. JN J Physiol 28:159–166

    Google Scholar 

  • Okano K, Yamamoto K, Ohba Y, Matsumura K, Miyaji T (1987) Source of elevated serum mitochondrial creatine kinase activity in patients with malignancy. Clin Chim Acta 169:159–164

    Article  PubMed  CAS  Google Scholar 

  • Oleott MC, Bradley ML, Haley BE (1994) Photoaffinity labeling of creatine kinase with 2-azidoand 8-azidoadenosine triphosphate: identification of two peptides from the ATP-binding domain. Biochemistry 33:11935–11941

    Article  Google Scholar 

  • Payne RM, Strauss AW (1994a) Expression of the mitochondrial creatine kinase genes. Mol Cell Biochem 133:235–243

    Article  PubMed  Google Scholar 

  • Payne RM, Strauss AW (1994b) Developmental expression of sarcomeric and ubiquitous mitochondrial creatine kinase is tissue-specific. Biochim Biophys Acta 1219:33–38

    PubMed  CAS  Google Scholar 

  • Payne RM, Haas RC, Strauss AW (1991) Structural characterization and tissue-specific expression of the messenger RNAs encoding isoenzymes from two rat mitochondrial creatine kinase genes. Biochim Biophys Acta 1089:352–361

    PubMed  CAS  Google Scholar 

  • Payne RM, Friedman DL, Grant JW, Perryman MB, Strauss AW (1993) Creatine kinase isoenzymes are highly regulated during pregnancy in rat uterus and placenta. Am J Physiol 265:E624-E635

    PubMed  CAS  Google Scholar 

  • Perraut C, Clottes E, Leydier C, Vial C, Marcillat O (1998) Role of quaternary structure in the stability of muscle creatine kinase monomer: tryptophan 210 is important for dimer cohesion. Proteins Struct Funct Genet 32:43–51

    Article  PubMed  CAS  Google Scholar 

  • Quemeneur E, Eichenberger D, Goldschmidt D, Vial C, Beauregard G, Potier M (1988) The radia- tion inactivation method provides evidence that membrane-bound mitochondrial creatine kinase is an oligomer. Biochem Biophys Res Commun 153:1310–1314

    Article  PubMed  CAS  Google Scholar 

  • Quemeneur E, Eichenberger D, Vial C (1990) Immunological determination of the oligomeric form of mitochondrial creatine kinase in situ. FEBS Lett 262:275–278

    Article  PubMed  CAS  Google Scholar 

  • Rojo M, Hovius R, Demel R, Wallimann T, Eppenberger HM, Nicolay K (1991a) Interaction of mitochondrial creatine kinase with model membranes - a monolayer study. FEBS Lett 281:123–129

    Article  PubMed  CAS  Google Scholar 

  • Rojo M, Hovius R, Demel RA, Nicolay K, Wallimann T (1991b) Mitochondrial creatine kinase mediates contact formation between mitochondrial membranes. J Biol Chem 266:20290–20295

    PubMed  CAS  Google Scholar 

  • Rossi AM, Eppenberger HM, Volpe P, Cotrufo R, Wallimann T (1990) Muscle-type MM creatine kinase is specifically bound to sarcoplasmic reiculum and can support Ca2+ uptake and regulate local ATP/ADP ratios. J Biol Chem 265:5258–5266

    PubMed  CAS  Google Scholar 

  • Saks VA (1980) Creatine kinase isoenzymes and the control of cardiac contraction. In: Jacobus WE, Ingwall JS (eds) Heart creatine kinase. Williams and Wilkins, Baltimore, pp 109–124

    Google Scholar 

  • Saks VA, Chernousova GB, Voronkov L, Smirnov VN, Chazov EI (1974) Study of energy transport mechanism in myocardial cells. Circ Res 34:138–148

    Google Scholar 

  • Saks VA, Rosenshtraukh LV, Smirnov VN, Chazov EI (1978) Role of creatine Phosphokinase in cellular function and metabolism. Can J Physiol Pharmacol 56:691–706

    Article  PubMed  CAS  Google Scholar 

  • Saks VA, Ventura-Clapier R, Khuchua ZA, Preobrazhensky AN, Emelin IV (1984) Creatine kinase in regulation of heart function and metabolism. Further evidence for compartmentation of adenine nucleotides in cardiac myofibrillar and sarcolemmal coupled ATPase-creatine kinase. Biochim Biophys Acta 803:254–264

    Article  PubMed  CAS  Google Scholar 

  • Schafer BW, Perriard JC (1988) Intracellular targeting of isoproteins in muscle cytoarchitecture. J Cell Biol 106:1161–1170

    Article  PubMed  CAS  Google Scholar 

  • Schlegel J, Zurbriggen B, Wegmann G, Wyss M, Eppenberger HM, Wallimann T (1988) Native mitochondrial creatine kinase forms octameric structures. Isolation of two interconvertible mitochondrial creatine kinase forms, dimeric and octameric mitochondrial creatine kinase: characterization, localization, and structure-function relationships. J Biol Chem 263: 16942–16953

    PubMed  CAS  Google Scholar 

  • Schlegel J, Wyss M, Eppenberger HM, Wallimann T (1990) Functional studies with the octameric and dimeric form of mitochondrial creatine kinase. J Biol Chem 265:9221–9227

    PubMed  CAS  Google Scholar 

  • Schmitt T, Pette D (1985) Increased mitochondrial creatine kinase in chronically stimulated fasttwitch rabbit muscle. FEBS Lett 188:341–344

    Article  PubMed  CAS  Google Scholar 

  • Schnyder T, Engel A, Lustig A, Wallimann T (1988) Native mitochondrial creatine kinase forms octameric structures. Characterization of dimers and octamers by ultracentrifugation, direct mass measurements by scanning transmission electron microscopy, and image analysis of single mitochondrial creatine kinase octamers. J Biol Chem 263:16954–16962

    PubMed  CAS  Google Scholar 

  • Schnyder T, Gross H, Winkler H, Eppenberger HM, Wallimann T (1991) Structure of the mitochondrial creatine kinase octamer — high-resolution shadowing and image averaging of single molecules and formation of linear filaments under specific staining conditions. J Cell Biol 112:95–101

    Article  PubMed  CAS  Google Scholar 

  • Schnyder T, Cyrklaff M, Wallimann T, Fuchs K (1994) Crystallization of mitochondrial creatine kinase on negatively charged lipid layers. J Struct Biol 112:136–147

    Article  PubMed  CAS  Google Scholar 

  • Smeitink J, Ruitenbeek W, Sengers R, Wevers R, Vonlith T, Trijbels F (1994) Mitochondiral creatine kinase activity in patients with disturbed energy generation in muscle mitochondria. J Inherit Metab Dis 17:67–73

    Article  PubMed  CAS  Google Scholar 

  • Stadhouders AM, Jap PHK, Winkler HP, Eppenberger HM, Wallimann T (1994) Mitochondiral creatine kinase: a major constituent of pathological inclusions seen in mitochondrial myopathies. Proc Natl Acad Sci USA 91:5089–5093

    Article  PubMed  CAS  Google Scholar 

  • Stallings RL, Olson E, Strauss AW, Thompson LH (1988) Human creatine kinase genes on chromosomes 15 and 19, and proximity of the gene for the muscle form to the genes for apolipoprotein C2 and excision repair. Am J Hum Genet 43:144–151

    PubMed  CAS  Google Scholar 

  • Steeghs K, Peters W, Bruckwilder M, Croes H, Vanalewijk D, Wieringa B (1995a) Mouse ubiquitous mitochondrial creatine kinase: gene organization and consequences from inactivation in mouse embryonic stem cells. DNA Cell Biol 14:539–553

    Article  PubMed  CAS  Google Scholar 

  • Steeghs K, Oerlemans F, Wieringa B (1995b) Mice deficient in ubiquitous mitochondrial creatine kinase are viable and fertile. Biochim Biophys Acta 1230:130–138

    Article  PubMed  Google Scholar 

  • Stein W, Bohner J, Renn W, Maulbetsch R (1985) Macro creatine kinase type 2: results of a prospective study in hospitalized patients. Clin Chem 31:1959–1964

    PubMed  CAS  Google Scholar 

  • Stöckler S, Holzbach U, Hanefeld F, Marquardt I, Helms G, Requart M, Hänicke W, Frahm J (1994) Creatine deficiency in the brain: a new treatable inborn error of metabolism. Pediatr Res 36:409–413

    PubMed  Google Scholar 

  • Ström S, Bendz R (1986) Creatine kinase and lactate dehydrogenase isoenzymes in stage D prostatic carcinoma. Clin Chim Acta 159:219–228

    Article  PubMed  Google Scholar 

  • Suzuki H, Hosokawa Y, Toda H, Nishikimi M, Ozawa T (1990) Common protein-binding sites in the 5’ flanking regions of human genes for cytochrome cl and ubiquinone binding proteins. J Biol Chem 265:8159–8163

    PubMed  CAS  Google Scholar 

  • Sylven C, Kallner A, Henze A, Larsen F, Liska J, Mogensen L (1985) Release patterns of CK-MB and mitochondrial CK following myocardial ischaemia. Clin Chim Act 151:111–119

    Article  CAS  Google Scholar 

  • Sylven C, Lin L, Kallner A, Sotonyi P, Somogyi E, Jansson E (1991) Dynamics of creatine kinase shuttle enzymes in the human heart. Eur J Clin Invest 21:350–354

    Article  PubMed  CAS  Google Scholar 

  • Tilcock CPS (1986) Lipid polymorphism. Chem Phys Lipids 40:109–125

    Article  PubMed  CAS  Google Scholar 

  • Trask RV, Billadello JJ (1990) Tissue-specific distribution and developmental regulation of M and B creatine kinase mRNAs. Biochim Biophys Acta 1049:182–188

    PubMed  CAS  Google Scholar 

  • Vacheron M J, Clottes E, Chautard C, Vial C (1997) Mitochondrial creatine kinase interaction with phospholipid vesicles. Arch Biochem Biophys 344:316–324

    Article  PubMed  CAS  Google Scholar 

  • Veksler VI, Murat I, Ventura-Clapier R (1991) Creatine kinase and mechanical and mitochondrial functions in hereditary and diabetic cardiomyopathies. Can J Physiol Pharmacol 69:852–858

    Article  PubMed  CAS  Google Scholar 

  • Ventura-Clapier R, Veksler V, Hoerter JA (1994) Myofibrillar creatine kinase and cardiac contraction. Mol Cell Biochem 133:125–144

    Google Scholar 

  • Ventura-Clapier R, Kuznetsov AV, D’Albis A, Vandeursen J, Wieringa B, Veksler VI (1995) Muscle creatine kinase-deficient mice. I. Alterations in myofibrillar function. J Biol Chem 270:19914–19920

    Article  PubMed  CAS  Google Scholar 

  • Vial C, Marcillat O, Goldschmidt D, Font B, Eichenberger D (1986) Interaction of creatine kinase with phosphorylating rabbit heart mitochondria and mitoplasts. Arch Biochem Biophys 251:558–566

    Article  PubMed  CAS  Google Scholar 

  • Wallimann T, Schlöser T, Eppenberger HM (1984) Function of M-line-bound creatine kinase as intramyofibrillar ATP regenerator at the receiving end of the phosphorylcreatine shuttle in muscle. J Biol Chem 259:5238–5246

    PubMed  CAS  Google Scholar 

  • Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger HM (1992) Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands — the phosphocreatine circuit for cellular energy homeostasis. Biochem J 281:21–40

    PubMed  CAS  Google Scholar 

  • Wegmann G, Huber R, Zanolla E, Eppenberger HM, Wallimann T (1991) Differential expression and localization of brain-type and mitochondrial creatine kinase isoenzymes during development of the chicken retina — Mi-Ck as a marker for differentiation of photoreceptor cells. Differentiation 46:77–87

    Article  PubMed  CAS  Google Scholar 

  • Wu AHB, Herson WC, Bowers GN (1983) Macro creatine kinase type 1 and 2: clinical significance in neonates and children as compared with adults. Clin Chem 29:201–204

    PubMed  CAS  Google Scholar 

  • Wyss M, Smeitink J, Wevers RA, Wallimann T (1992) Mitochondrial creatine kinase — a key enzyme of aerobic energy metabolism. Biochim Biophys Acta 1102:119–166

    Article  PubMed  CAS  Google Scholar 

  • Wyss M, James P, Schlegel J, Wallimann T (1993) Limited proteolysis of creatine kinase — implications for 3-dimensional structure and for conformational substates. Biochemistry 32:10727–10735

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Clottes, E., Marcillat, O., Vacheron, M.J., Leydier, C., Vial, C. (1999). The Normal and Pathological Structure, Function and Expression of Mitochondrial Creatine Kinase. In: Lestienne, P. (eds) Mitochondrial Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59884-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59884-5_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64166-4

  • Online ISBN: 978-3-642-59884-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics